Welche Supplemente lohnen sich wirklich? (Teil 1)

Einleitung

Nahrungsergänzungsmittel haben in der Fitness- und Gesundheitsbranche einen hohen Stellenwert. In diesem Artikel wird untersucht, welche Supplemente wirklich wirksam sind und welche wissenschaftlichen Belege ihre Wirksamkeit unterstützen.

Kreatin

Kreatin ist eines der am besten erforschten Supplemente mit nachgewiesenen Vorteilen für den Muskelaufbau und die Steigerung der Muskelkraft. Es unterstützt die Energieproduktion in den Muskeln, was insbesondere bei kurzen, intensiven Belastungen hilfreich ist. Studien zeigen, dass Kreatin die Trainingsleistung verbessern und die Muskelmasse erhöhen kann.

Protein

Protein ist essentiell für den Muskelaufbau und die Regeneration. Proteinpulver wie Whey-Protein sind aufgrund ihrer hohen biologischen Wertigkeit und schnellen Verdaulichkeit besonders beliebt. Eine erhöhte Proteinaufnahme kann das Muskelwachstum fördern und die Erholung nach dem Training verbessern. Untersuchungen haben gezeigt, dass eine Supplementierung mit Protein die Muskelmasse und -kraft signifikant steigern kann​.

Omega-3-Fettsäuren

Omega-3-Fettsäuren, vor allem aus Fischöl, haben entzündungshemmende Eigenschaften und sind gut für die Herzgesundheit. Sie können auch die Muskelproteinsynthese unterstützen und somit den Muskelaufbau fördern. Studien haben gezeigt, dass Omega-3-Fettsäuren die Erholung nach dem Training verbessern und Entzündungen reduzieren können.

Vitamin D

Vitamin D ist wichtig für die Knochengesundheit und das Immunsystem. Ein Mangel kann die Leistungsfähigkeit beeinträchtigen und das Verletzungsrisiko erhöhen. Supplementierung kann besonders in den Wintermonaten sinnvoll sein, wenn die Sonneneinstrahlung gering ist. Studien belegen, dass eine ausreichende Vitamin-D-Zufuhr die Muskelkraft und allgemeine Gesundheit unterstützt.

Koffein

Koffein ist ein effektives Leistungssteigerungsmittel, das die Ausdauer und Konzentration verbessern kann. Es ist besonders nützlich vor dem Training, da es die wahrgenommene Anstrengung reduziert und die Leistungsfähigkeit steigert. Forschungsergebnisse zeigen, dass Koffein die physische und kognitive Leistungsfähigkeit erhöhen kann​.

Beta-Alanin

Beta-Alanin hilft, die Muskel-Ausdauer zu verbessern, indem es die Carnosinkonzentration in den Muskeln erhöht. Dies führt zu einer besseren Säurepufferung und verzögert die Ermüdung bei hochintensiven Belastungen. Studien haben gezeigt, dass Beta-Alanin die Trainingsleistung und Muskel-Ausdauer signifikant verbessern kann.

Schlussfolgerung

Die in diesem Artikel behandelten Supplemente – Kreatin, Protein, Omega-3-Fettsäuren, Vitamin D, Koffein und Beta-Alanin – haben wissenschaftlich belegte Vorteile und können gezielt eingesetzt werden, um bestimmte Trainingsziele zu erreichen. Es ist jedoch wichtig, die Supplementierung auf die individuellen Bedürfnisse und Ziele abzustimmen und sich bei Unsicherheiten von Fachleuten beraten zu lassen.

 

Dein DK Sports & Physio Team aus der Karlsruher Oststadt

Den ausführlichen Artikel findest du in unserer DK Academy.

Wir geben Physiotherapeuten, Trainern und allen Wissbegierigen einen sachlichen Einblick in die Physiotherapie und helfen so die Rehabilitation und das Training nach Verletzungen oder Beschwerden effizienter zu gestalten.

Sichere dir vollen Zugriff auf unsere Rehab Live Sessions, exklusive Review- und Blogartikel, Simple Tipps und Infografiken.

Du benötigst Physiotherapie im Raum Karlsruhe? Dann sind wir gerne für dich da und unterstützen dich!

Dein DK Sports & Physio Team aus der Karlsruher Oststadt

Vereinbare hier direkt einen Termin

Quellenangaben:

[1] Protein. (o. D.). DGE. https://www.dge.de/wissenschaft/referenzwerte/protein/
[2] Lemon, P. W., Tarnopolsky, M. A., MacDougall, J. D., & Atkinson, S. A. (1992). Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. Journal of applied physiology (Bethesda, Md. : 1985), 73(2), 767–775. https://doi.org/10.1152/jappl.1992.73.2.767
[3] Tarnopolsky, M. A., Atkinson, S. A., MacDougall, J. D., Chesley, A., Phillips, S., & Schwarcz, H. P. (1992). Evaluation of protein requirements for trained strength athletes. Journal of applied physiology (Bethesda, Md. : 1985), 73(5), 1986–1995. https://doi.org/10.1152/jappl.1992.73.5.1986
[4] Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M., Helms, E., Aragon, A. A., Devries, M. C., Banfield, L., Krieger, J. W., & Phillips, S. M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British journal of sports medicine, 52(6), 376–384. https://doi.org/10.1136/bjsports-2017-097608
[5] Bandegan, A., Courtney-Martin, G., Rafii, M., Pencharz, P. B., & Lemon, P. W. (2017). Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. The Journal of nutrition, 147(5), 850–857. https://doi.org/10.3945/jn.116.236331
[6] Campbell, B., Kreider, R.B., Ziegenfuss, T. et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr 4, 8 (2007). https://doi.org/10.1186/1550-2783-4-8
[7] Antonio, J., Ellerbroek, A., Silver, T. et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women – a follow-up investigation. J Int Soc Sports Nutr 12, 39 (2015). https://doi.org/10.1186/s12970-015-0100-0
[8] Moore, D. R., Del Bel, N. C., Nizi, K. I., Hartman, J. W., Tang, J. E., Armstrong, D., & Phillips, S. M. (2007). Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. The Journal of nutrition, 137(4), 985–991. https://doi.org/10.1093/jn/137.4.985
[9] Ribeiro, A. S., Nunes, J. P., & Schoenfeld, B. J. (2019). Should Competitive Bodybuilders Ingest More Protein than Current Evidence-Based Recommendations?. Sports medicine (Auckland, N.Z.), 49(10), 1481–1485. https://doi.org/10.1007/s40279-019-01111-y
[10] Wooding, D. J., Packer, J. E., Kato, H., West, D. W. D., Courtney-Martin, G., Pencharz, P. B., & Moore, D. R. (2017). Increased Protein Requirements in Female Athletes after Variable-Intensity Exercise. Medicine and science in sports and exercise, 49(11), 2297–2304. https://doi.org/10.1249/MSS.0000000000001366
[11] Simmons, E., Fluckey, J. D., & Riechman, S. E. (2016). Cumulative Muscle Protein Synthesis and Protein Intake Requirements. Annual review of nutrition, 36, 17–43. https://doi.org/10.1146/annurev-nutr-071813-105549
[12] Phillips, S. M., & Van Loon, L. J. (2011). Dietary protein for athletes: from requirements to optimum adaptation. Journal of sports sciences, 29 Suppl 1, S29–S38. https://doi.org/10.1080/02640414.2011.619204
[13] Helms, E. R., Zinn, C., Rowlands, D. S., & Brown, S. R. (2014). A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. International journal of sport nutrition and exercise metabolism, 24(2), 127–138. https://doi.org/10.1123/ijsnem.2013-0054
[14] McIver, C. M., Wycherley, T. P., & Clifton, P. M. (2012). MTOR signaling and ubiquitin-proteosome gene expression in the preservation of fat free mass following high protein, calorie restricted weight loss. Nutrition & metabolism, 9(1), 83. https://doi.org/10.1186/1743-7075-9-83
[15] Tokede, O. A., Onabanjo, T. A., Yansane, A., Gaziano, J. M., & Djoussé, L. (2015). Soya products and serum lipids: a meta-analysis of randomised controlled trials. The British journal of nutrition, 114(6), 831–843. https://doi.org/10.1017/S0007114515002603
[16] Devries, M. C., & Phillips, S. M. (2015). Supplemental protein in support of muscle mass and health: advantage whey. Journal of food science, 80(S1), A8-A15.
[17] Hulmi, J. J., Lockwood, C. M., & Stout, J. R. (2010). Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & metabolism, 7(1), 1-11.
[18] Hulmi, J. J., Lockwood, C. M., & Stout, J. R. (2010). Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & metabolism, 7, 51. https://doi.org/10.1186/1743-7075-7-51
[19] van Vliet, S., Burd, N. A., & van Loon, L. J. (2015). The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. The Journal of nutrition, 145(9), 1981–1991. https://doi.org/10.3945/jn.114.204305
[20] Norton, L. E., Wilson, G. J., Layman, D. K., Moulton, C. J., & Garlick, P. J. (2012). Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutrition & metabolism, 9(1), 67. https://doi.org/10.1186/1743-7075-9-67
[21] Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., & Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of applied physiology (Bethesda, Md. : 1985), 107(3), 987–992. https://doi.org/10.1152/japplphysiol.00076.2009
[22] Messina, M., Lynch, H., Dickinson, J. M., & Reed, K. E. (2018). No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. International journal of sport nutrition and exercise metabolism, 28(6), 674–685. https://doi.org/10.1123/ijsnem.2018-0071
[23] Mayhew, D. L., Kim, J. S., Cross, J. M., Ferrando, A. A., & Bamman, M. M. (2009). Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. Journal of applied physiology (Bethesda, Md. : 1985), 107(5), 1655–1662. https://doi.org/10.1152/japplphysiol.91234.2008
[24] Mitchell, C. J., Churchward-Venne, T. A., Parise, G., Bellamy, L., Baker, S. K., Smith, K., Atherton, P. J., & Phillips, S. M. (2014). Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PloS one, 9(2), e89431. https://doi.org/10.1371/journal.pone.0089431
[25] Gran, P., Larsen, A.E., Bonham, M. et al. Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial. Nutr Metab (Lond) 11, 46 (2014). https://doi.org/10.1186/1743-7075-11-46
[26] Luiking, Y. C., Engelen, M. P., Soeters, P. B., Boirie, Y., & Deutz, N. E. (2011). Differential metabolic effects of casein and soy protein meals on skeletal muscle in healthy volunteers. Clinical nutrition (Edinburgh, Scotland), 30(1), 65–72. https://doi.org/10.1016/j.clnu.2010.06.012
[27] Mitchell, C. J., Della Gatta, P. A., Petersen, A. C., Cameron-Smith, D., & Markworth, J. F. (2015). Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men. Journal of the International Society of Sports Nutrition, 12, 6. https://doi.org/10.1186/s12970-015-0070-2
[28] Rittig, N., Bach, E., Thomsen, H. H., Møller, A. B., Hansen, J., Johannsen, M., Jensen, E., Serena, A., Jørgensen, J. O., Richelsen, B., Jessen, N., & Møller, N. (2017). Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial. Clinical nutrition (Edinburgh, Scotland), 36(3), 697–705. https://doi.org/10.1016/j.clnu.2016.05.004
[29] Wilkinson, S. B., Tarnopolsky, M. A., Macdonald, M. J., Macdonald, J. R., Armstrong, D., & Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American journal of clinical nutrition, 85(4), 1031–1040. https://doi.org/10.1093/ajcn/85.4.1031
[30] Yang, Y., Breen, L., Burd, N. A., Hector, A. J., Churchward-Venne, T. A., Josse, A. R., Tarnopolsky, M. A., & Phillips, S. M. (2012). Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. The British journal of nutrition, 108(10), 1780–1788. https://doi.org/10.1017/S0007114511007422
[31] Miller, B. F., Olesen, J. L., Hansen, M., Døssing, S., Crameri, R. M., Welling, R. J., Langberg, H., Flyvbjerg, A., Kjaer, M., Babraj, J. A., Smith, K., & Rennie, M. J. (2005). Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. The Journal of physiology, 567(Pt 3), 1021–1033. https://doi.org/10.1113/jphysiol.2005.093690
[32] Phillips, S. M., & Van Loon, L. J. (2011). Dietary protein for athletes: from requirements to optimum adaptation. Journal of sports sciences, 29 Suppl 1, S29–S38. https://doi.org/10.1080/02640414.2011.619204
[33] Kerksick, C., Harvey, T., Stout, J., Campbell, B., Wilborn, C., Kreider, R., Kalman, D., Ziegenfuss, T., Lopez, H., Landis, J., Ivy, J. L., & Antonio, J. (2008). International Society of Sports Nutrition position stand: nutrient timing. Journal of the International Society of Sports Nutrition, 5, 17. https://doi.org/10.1186/1550-2783-5-17
[34] Lemon, P. W., Berardi, J. M., & Noreen, E. E. (2002). The role of protein and amino acid supplements in the athlete’s diet: does type or timing of ingestion matter?. Current sports medicine reports, 1(4), 214–221. https://doi.org/10.1249/00149619-200208000-00005
[35] Ivy, J., & Portman, R. (2004). Nutrient timing: The future of sports nutrition. Basic Health Publications, Inc..
[36] Candow, D. G., & Chilibeck, P. D. (2008). Timing of creatine or protein supplementation and resistance training in the elderly. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 33(1), 184–190. https://doi.org/10.1139/H07-139
[37] Tipton, K. D., Elliott, T. A., Cree, M. G., Wolf, S. E., Sanford, A. P., & Wolfe, R. R. (2004). Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Medicine and science in sports and exercise, 36(12), 2073–2081. https://doi.org/10.1249/01.mss.0000147582.99810.c5
[38] Rasmussen, B. B., Tipton, K. D., Miller, S. L., Wolf, S. E., & Wolfe, R. R. (2000). An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of applied physiology (Bethesda, Md. : 1985), 88(2), 386–392. https://doi.org/10.1152/jappl.2000.88.2.386
[39] Tipton, K. D., Elliott, T. A., Ferrando, A. A., Aarsland, A. A., & Wolfe, R. R. (2009). Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 34(2), 151–161. https://doi.org/10.1139/H09-006
[40] Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D., Jr, & Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. The American journal of physiology, 276(4), E628–E634. https://doi.org/10.1152/ajpendo.1999.276.4.E628
[41] Cribb, P. J., & Hayes, A. (2006). Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Medicine and science in sports and exercise, 38(11), 1918–1925. https://doi.org/10.1249/01.mss.0000233790.08788.3e
[42] Willoughby, D. S., Stout, J. R., & Wilborn, C. D. (2007). Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino acids, 32(4), 467–477. https://doi.org/10.1007/s00726-006-0398-7
[43] Hulmi, J. J., Kovanen, V., Selänne, H., Kraemer, W. J., Häkkinen, K., & Mero, A. A. (2009). Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino acids, 37(2), 297–308. https://doi.org/10.1007/s00726-008-0150-6
[44] Burk, A., Timpmann, S., Medijainen, L., Vähi, M., & Oöpik, V. (2009). Time-divided ingestion pattern of casein-based protein supplement stimulates an increase in fat-free body mass during resistance training in young untrained men. Nutrition research (New York, N.Y.), 29(6), 405–413. https://doi.org/10.1016/j.nutres.2009.03.008
[45] Hoffman, J. R., Ratamess, N. A., Tranchina, C. P., Rashti, S. L., Kang, J., & Faigenbaum, A. D. (2009). Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. International journal of sport nutrition and exercise metabolism, 19(2), 172–185. https://doi.org/10.1123/ijsnem.19.2.172
[46] Verdijk, L. B., Jonkers, R. A., Gleeson, B. G., Beelen, M., Meijer, K., Savelberg, H. H., Wodzig, W. K., Dendale, P., & van Loon, L. J. (2009). Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. The American journal of clinical nutrition, 89(2), 608–616. https://doi.org/10.3945/ajcn.2008.26626
[47] Wycherley, T. P., Noakes, M., Clifton, P. M., Cleanthous, X., Keogh, J. B., & Brinkworth, G. D. (2010). Timing of protein ingestion relative to resistance exercise training does not influence body composition, energy expenditure, glycaemic control or cardiometabolic risk factors in a hypocaloric, high protein diet in patients with type 2 diabetes. Diabetes, obesity & metabolism, 12(12), 1097–1105. https://doi.org/10.1111/j.1463-1326.2010.01307.x
[48] Schoenfeld, B. J., Aragon, A. A., & Krieger, J. W. (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. Journal of the International Society of Sports Nutrition, 10(1), 53. https://doi.org/10.1186/1550-2783-10-53
[49] Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W., Broad, E. M., Jeacocke, N. A., Moore, D. R., Stellingwerff, T., Phillips, S. M., Hawley, J. A., & Coffey, V. G. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of physiology, 591(9), 2319–2331. https://doi.org/10.1113/jphysiol.2012.244897
[50] Bilsborough, S., & Mann, N. (2006). A review of issues of dietary protein intake in humans. International journal of sport nutrition and exercise metabolism, 16(2), 129–152. https://doi.org/10.1123/ijsnem.16.2.129
[51] Schoenfeld, B.J., Aragon, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr 15, 10 (2018). https://doi.org/10.1186/s12970-018-0215-1
[52] Macnaughton, L. S., Wardle, S. L., Witard, O. C., McGlory, C., Hamilton, D. L., Jeromson, S., Lawrence, C. E., Wallis, G. A., & Tipton, K. D. (2016). The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiological reports, 4(15), e12893. https://doi.org/10.14814/phy2.12893
[53] Holwerda, A. M., Paulussen, K. J. M., Overkamp, M., Goessens, J. P. B., Kramer, I. F., Wodzig, W. K. W. H., Verdijk, L. B., & van Loon, L. J. C. (2019). Dose-Dependent Increases in Whole-Body Net Protein Balance and Dietary Protein-Derived Amino Acid Incorporation into Myofibrillar Protein During Recovery from Resistance Exercise in Older Men. The Journal of nutrition, 149(2), 221–230. https://doi.org/10.1093/jn/nxy263
[54] Trommelen, J., van Lieshout, G. A. A., Nyakayiru, J., Holwerda, A. M., Smeets, J. S. J., Hendriks, F. K., van Kranenburg, J. M. X., Zorenc, A. H., Senden, J. M., Goessens, J. P. B., Gijsen, A. P., & van Loon, L. J. C. (2023). The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell reports. Medicine, 4(12), 101324. https://doi.org/10.1016/j.xcrm.2023.101324
[55] Layman D. K. (2004). Protein quantity and quality at levels above the RDA improves adult weight loss. Journal of the American College of Nutrition, 23(6 Suppl), 631S–636S. https://doi.org/10.1080/07315724.2004.10719435
[56] Atherton, P. J., & Smith, K. (2012). Muscle protein synthesis in response to nutrition and exercise. The Journal of physiology, 590(5), 1049–1057. https://doi.org/10.1113/jphysiol.2011.225003
[57] Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14, 18. https://doi.org/10.1186/s12970-017-0173-z
[58] Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., Ljungqvist, A., … Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. British journal of sports medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
[59] Harris, R. C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical science (London, England : 1979), 83(3), 367–374. https://doi.org/10.1042/cs0830367
[60] Green, A. L., Simpson, E. J., Littlewood, J. J., Macdonald, I. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta physiologica Scandinavica, 158(2), 195–202. https://doi.org/10.1046/j.1365-201X.1996.528300000.x
[61] Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K., & Hultman, E. (1993). Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clinical science (London, England : 1979), 84(5), 565–571. https://doi.org/10.1042/cs0840565
[62] Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. Journal of applied physiology (Bethesda, Md. : 1985), 81(1), 232–237. https://doi.org/10.1152/jappl.1996.81.1.232
[63] Schlattner, U., Klaus, A., Ramirez Rios, S., Guzun, R., Kay, L., & Tokarska-Schlattner, M. (2016). Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino acids, 48(8), 1751–1774. https://doi.org/10.1007/s00726-016-2267-3
[64] Ydfors, M., Hughes, M. C., Laham, R., Schlattner, U., Norrbom, J., & Perry, C. G. (2016). Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. The Journal of physiology, 594(11), 3127–3140. https://doi.org/10.1113/JP271259
[65] Buford, T. W., Kreider, R. B., Stout, J. R., Greenwood, M., Campbell, B., Spano, M., Ziegenfuss, T., Lopez, H., Landis, J., & Antonio, J. (2007). International Society of Sports Nutrition position stand: creatine supplementation and exercise. Journal of the International Society of Sports Nutrition, 4, 6. https://doi.org/10.1186/1550-2783-4-6
[66] Green, A. L., Hultman, E., Macdonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. The American journal of physiology, 271(5 Pt 1), E821–E826. https://doi.org/10.1152/ajpendo.1996.271.5.E821
[67] Brosnan, M. E., & Brosnan, J. T. (2016). The role of dietary creatine. Amino acids, 48(8), 1785–1791. https://doi.org/10.1007/s00726-016-2188-1
[68] Braissant, O., Henry, H., Béard, E., & Uldry, J. (2011). Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino acids, 40(5), 1315–1324. https://doi.org/10.1007/s00726-011-0852-z
[69] Benton, D., & Donohoe, R. (2011). The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. The British journal of nutrition, 105(7), 1100–1105. https://doi.org/10.1017/S0007114510004733
[70] Burke, D. G., Chilibeck, P. D., Parise, G., Candow, D. G., Mahoney, D., & Tarnopolsky, M. (2003). Effect of creatine and weight training on muscle creatine and performance in vegetarians. Medicine and science in sports and exercise, 35(11), 1946–1955. https://doi.org/10.1249/01.MSS.0000093614.17517.79
[71] Kreider, R. B., Melton, C., Rasmussen, C. J., Greenwood, M., Lancaster, S., Cantler, E. C., Milnor, P., & Almada, A. L. (2003). Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Molecular and cellular biochemistry, 244(1-2), 95–104.
[72] Hanna-El-Daher, L., & Braissant, O. (2016). Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?. Amino acids, 48(8), 1877–1895. https://doi.org/10.1007/s00726-016-2189-0
[73] Bender, A., & Klopstock, T. (2016). Creatine for neuroprotection in neurodegenerative disease: end of story?. Amino acids, 48(8), 1929–1940. https://doi.org/10.1007/s00726-015-2165-0
[74] Kreider RB, Jung YP. Creatine supplementation in exercise, sport, and medicine. J Exerc Nutr Biochem. 2011;15(2):53–69. https://doi.org/10.5717/jenb.2011.15.2.53
[75] Cornish, S. M., Chilibeck, P. D., & Burke, D. G. (2006). The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. The Journal of sports medicine and physical fitness, 46(1), 90–98.
[76] Dawson, B., Vladich, T., & Blanksby, B. A. (2002). Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. Journal of strength and conditioning research, 16(4), 485–490.
[77] Grindstaff, P. D., Kreider, R., Bishop, R., Wilson, M., Wood, L., Alexander, C., & Almada, A. (1997). Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. International journal of sport nutrition, 7(4), 330–346. https://doi.org/10.1123/ijsn.7.4.330
[78] Juhász, I., Györe, I., Csende, Z., Rácz, L., & Tihanyi, J. (2009). Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta physiologica Hungarica, 96(3), 325–336. https://doi.org/10.1556/APhysiol.96.2009.3.6
[79] Silva, A. J., Machado Reis, V., Guidetti, L., Bessone Alves, F., Mota, P., Freitas, J., & Baldari, C. (2007). Effect of creatine on swimming velocity, body composition and hydrodynamic variables. The Journal of sports medicine and physical fitness, 47(1), 58–64.
[80] Galvan, E., Walker, D. K., Simbo, S. Y., Dalton, R., Levers, K., O’Connor, A., Goodenough, C., Barringer, N. D., Greenwood, M., Rasmussen, C., Smith, S. B., Riechman, S. E., Fluckey, J. D., Murano, P. S., Earnest, C. P., & Kreider, R. B. (2016). Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. Journal of the International Society of Sports Nutrition, 13, 12. https://doi.org/10.1186/s12970-016-0124-0
[81] Kreider, R. B., Ferreira, M., Wilson, M., Grindstaff, P., Plisk, S., Reinardy, J., Cantler, E., & Almada, A. L. (1998). Effects of creatine supplementation on body composition, strength, and sprint performance. Medicine and science in sports and exercise, 30(1), 73–82. https://doi.org/10.1097/00005768-199801000-00011
[82] Stone, M. H., Sanborn, K., Smith, L. L., O’Bryant, H. S., Hoke, T., Utter, A. C., Johnson, R. L., Boros, R., Hruby, J., Pierce, K. C., Stone, M. E., & Garner, B. (1999). Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. International journal of sport nutrition, 9(2), 146–165. https://doi.org/10.1123/ijsn.9.2.146
[83] Bemben, M. G., Bemben, D. A., Loftiss, D. D., & Knehans, A. W. (2001). Creatine supplementation during resistance training in college football athletes. Medicine and science in sports and exercise, 33(10), 1667–1673. https://doi.org/10.1097/00005768-200110000-00009
[84] Hoffman, J., Ratamess, N., Kang, J., Mangine, G., Faigenbaum, A., & Stout, J. (2006). Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. International journal of sport nutrition and exercise metabolism, 16(4), 430–446. https://doi.org/10.1123/ijsnem.16.4.430
[85] Chilibeck, P. D., Magnus, C., & Anderson, M. (2007). Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 32(6), 1052–1057. https://doi.org/10.1139/H07-072
[86] Claudino, J. G., Mezêncio, B., Amaral, S., Zanetti, V., Benatti, F., Roschel, H., Gualano, B., Amadio, A. C., & Serrão, J. C. (2014). Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. Journal of the International Society of Sports Nutrition, 11, 32. https://doi.org/10.1186/1550-2783-11-32
[87] Kerksick, C. M., Rasmussen, C., Lancaster, S., Starks, M., Smith, P., Melton, C., Greenwood, M., Almada, A., & Kreider, R. (2007). Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition (Burbank, Los Angeles County, Calif.), 23(9), 647–656. https://doi.org/10.1016/j.nut.2007.06.015
[88] Kerksick, C. M., Wilborn, C. D., Campbell, W. I., Harvey, T. M., Marcello, B. M., Roberts, M. D., Parker, A. G., Byars, A. G., Greenwood, L. D., Almada, A. L., Kreider, R. B., & Greenwood, M. (2009). The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. Journal of strength and conditioning research, 23(9), 2673–2682. https://doi.org/10.1519/JSC.0b013e3181b3e0de
[89] Volek, J. S., Kraemer, W. J., Bush, J. A., Boetes, M., Incledon, T., Clark, K. L., & Lynch, J. M. (1997). Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Journal of the American Dietetic Association, 97(7), 765–770. https://doi.org/10.1016/S0002-8223(97)00189-2
[90] Volek, J. S., Mazzetti, S. A., Farquhar, W. B., Barnes, B. R., Gómez, A. L., & Kraemer, W. J. (2001). Physiological responses to short-term exercise in the heat after creatine loading. Medicine and science in sports and exercise, 33(7), 1101–1108. https://doi.org/10.1097/00005768-200107000-00006
[91] Volek, J. S., Ratamess, N. A., Rubin, M. R., Gómez, A. L., French, D. N., McGuigan, M. M., Scheett, T. P., Sharman, M. J., Häkkinen, K., & Kraemer, W. J. (2004). The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. European journal of applied physiology, 91(5-6), 628–637. https://doi.org/10.1007/s00421-003-1031-z
[92] Kreider, R.B., Wilborn, C.D., Taylor, L. et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 7, 7 (2010). https://doi.org/10.1186/1550-2783-7-7
[93] Tarnopolsky M. A. (2000). Potential benefits of creatine monohydrate supplementation in the elderly. Current opinion in clinical nutrition and metabolic care, 3(6), 497–502. https://doi.org/10.1097/00075197-200011000-00013
[94] Rawson, E. S., & Venezia, A. C. (2011). Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino acids, 40(5), 1349–1362. https://doi.org/10.1007/s00726-011-0855-9
[95] Branch J. D. (2003). Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism, 13(2), 198–226. https://doi.org/10.1123/ijsnem.13.2.198
[96] Devries, M. C., & Phillips, S. M. (2014). Creatine supplementation during resistance training in older adults-a meta-analysis. Medicine and science in sports and exercise, 46(6), 1194–1203. https://doi.org/10.1249/MSS.0000000000000220
[97] Lanhers, C., Pereira, B., Naughton, G., Trousselard, M., Lesage, F. X., & Dutheil, F. (2015). Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports medicine (Auckland, N.Z.), 45(9), 1285–1294. https://doi.org/10.1007/s40279-015-0337-4
[98] Wiroth, J. B., Bermon, S., Andreï, S., Dalloz, E., Hébuterne, X., & Dolisi, C. (2001). Effects of oral creatine supplementation on maximal pedalling performance in older adults. European journal of applied physiology, 84(6), 533–539. https://doi.org/10.1007/s004210000370
[99] McMorris, T., Mielcarz, G., Harris, R. C., Swain, J. P., & Howard, A. (2007). Creatine supplementation and cognitive performance in elderly individuals. Neuropsychology, development, and cognition. Section B, Aging, neuropsychology and cognition, 14(5), 517–528. https://doi.org/10.1080/13825580600788100
[100] Rawson, E. S., & Clarkson, P. M. (2000). Acute creatine supplementation in older men. International journal of sports medicine, 21(1), 71–75. https://doi.org/10.1055/s-2000-8859
[101] Aguiar, A. F., Januário, R. S., Junior, R. P., Gerage, A. M., Pina, F. L., do Nascimento, M. A., Padovani, C. R., & Cyrino, E. S. (2013). Long-term creatine supplementation improves muscular performance during resistance training in older women. European journal of applied physiology, 113(4), 987–996. https://doi.org/10.1007/s00421-012-2514-6
[102] Forbes, S. C., Candow, D. G., Ferreira, L. H. B., & Souza-Junior, T. P. (2022). Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. Journal of dietary supplements, 19(3), 318–335. https://doi.org/10.1080/19390211.2021.1877232
[103] Chilibeck, P. D., Kaviani, M., Candow, D. G., & Zello, G. A. (2017). Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open access journal of sports medicine, 8, 213–226. https://doi.org/10.2147/OAJSM.S123529
[104] Candow, D.G., Chilibeck, P.D. & Forbes, S.C. Creatine supplementation and aging musculoskeletal health. Endocrine 45, 354–361 (2014). https://doi.org/10.1007/s12020-013-0070-4
[105] Branch, J. D. (2003). Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis, International Journal of Sport Nutrition and Exercise Metabolism, 13(2), 198-226. Retrieved Feb 19, 2023, from https://journals.humankinetics.com/view/journals/ijsnem/13/2/article-p198.xml
[106] Greenwood, M., Kreider, R. B., Melton, C., Rasmussen, C., Lancaster, S., Cantler, E., Milnor, P., & Almada, A. (2003). Creatine supplementation during college football training does not increase the incidence of cramping or injury. Molecular and cellular biochemistry, 244(1-2), 83–88.
[107] Greenwood, M., Kreider, R. B., Greenwood, L., & Byars, A. (2003). Cramping and Injury Incidence in Collegiate Football Players Are Reduced by Creatine Supplementation. Journal of athletic training, 38(3), 216–219.
[108] Greenwood, M., Farris, J., Kreider, R., Greenwood, L., & Byars, A. (2000). Creatine supplementation patterns and perceived effects in select division I collegiate athletes. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine, 10(3), 191–194. https://doi.org/10.1097/00042752-200007000-00007
[109] Watson, G., Casa, D. J., Fiala, K. A., Hile, A., Roti, M. W., Healey, J. C., Armstrong, L. E., & Maresh, C. M. (2006). Creatine use and exercise heat tolerance in dehydrated men. Journal of athletic training, 41(1), 18–29.
[110] Easton, C., Turner, S., & Pitsiladis, Y. P. (2007). Creatine and glycerol hyperhydration in trained subjects before exercise in the heat. International journal of sport nutrition and exercise metabolism, 17(1), 70–91. https://doi.org/10.1123/ijsnem.17.1.70
[111] Lopez, R. M., Casa, D. J., McDermott, B. P., Ganio, M. S., Armstrong, L. E., & Maresh, C. M. (2009). Does creatine supplementation hinder exercise heat tolerance or hydration status? A systematic review with meta-analyses. Journal of athletic training, 44(2), 215–223. https://doi.org/10.4085/1062-6050-44.2.215
[112] Dalbo, V. J., Roberts, M. D., Stout, J. R., & Kerksick, C. M. (2008). Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. British journal of sports medicine, 42(7), 567–573. https://doi.org/10.1136/bjsm.2007.042473
[113] Rosene, J. M., Matthews, T. D., Mcbride, K. J., Galla, A., Haun, M., Mcdonald, K., Gagne, N., Lea, J., Kasen, J., & Farias, C. (2015). The effects of creatine supplementation on thermoregulation and isokinetic muscular performance following acute (3-day) supplementation. The Journal of sports medicine and physical fitness, 55(12), 1488–1496.
[114] Hile, A. M., Anderson, J. M., Fiala, K. A., Stevenson, J. H., Casa, D. J., & Maresh, C. M. (2006). Creatine supplementation and anterior compartment pressure during exercise in the heat in dehydrated men. Journal of athletic training, 41(1), 30–35.
[115] Santos, R. V., Bassit, R. A., Caperuto, E. C., & Costa Rosa, L. F. (2004). The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life sciences, 75(16), 1917–1924. https://doi.org/10.1016/j.lfs.2003.11.036
[116] Vandenberghe, K., Goris, M., Van Hecke, P., Van Leemputte, M., Vangerven, L., & Hespel, P. (1997). Long-term creatine intake is beneficial to muscle performance during resistance training. Journal of applied physiology (Bethesda, Md. : 1985), 83(6), 2055–2063. https://doi.org/10.1152/jappl.1997.83.6.2055
[117] Schröder, H., Terrados, N., & Tramullas, A. (2005). Risk assessment of the potential side effects of long-term creatine supplementation in team sport athletes. European journal of nutrition, 44(4), 255–261. https://doi.org/10.1007/s00394-004-0519-6
[118] Sipilä, I., Rapola, J., Simell, O., & Vannas, A. (1981). Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. The New England journal of medicine, 304(15), 867–870. https://doi.org/10.1056/NEJM198104093041503
[119] Bender, A., Samtleben, W., Elstner, M., & Klopstock, T. (2008). Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutrition research (New York, N.Y.), 28(3), 172–178. https://doi.org/10.1016/j.nutres.2008.01.001
[120] Poortmans, J. R., Auquier, H., Renaut, V., Durussel, A., Saugy, M., & Brisson, G. R. (1997). Effect of short-term creatine supplementation on renal responses in men. European journal of applied physiology and occupational physiology, 76(6), 566–567. https://doi.org/10.1007/s004210050291
[121] Robinson, T. M., Sewell, D. A., Casey, A., Steenge, G., & Greenhaff, P. L. (2000). Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. British journal of sports medicine, 34(4), 284–288. https://doi.org/10.1136/bjsm.34.4.284
[122] Groeneveld, G. J., Beijer, C., Veldink, J. H., Kalmijn, S., Wokke, J. H., & van den Berg, L. H. (2005). Few adverse effects of long-term creatine supplementation in a placebo-controlled trial. International journal of sports medicine, 26(4), 307–313. https://doi.org/10.1055/s-2004-817917
[123] Gualano, B., Ugrinowitsch, C., Novaes, R. B., Artioli, G. G., Shimizu, M. H., Seguro, A. C., Harris, R. C., & Lancha, A. H., Jr (2008). Effects of creatine supplementation on renal function: a randomized, double-blind, placebo-controlled clinical trial. European journal of applied physiology, 103(1), 33–40. https://doi.org/10.1007/s00421-007-0669-3
[124] Lugaresi, R., Leme, M., de Salles Painelli, V., Murai, I. H., Roschel, H., Sapienza, M. T., Lancha Junior, A. H., & Gualano, B. (2013). Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet?. Journal of the International Society of Sports Nutrition, 10(1), 26. https://doi.org/10.1186/1550-2783-10-26
[125] Farquhar, W. B., & Zambraski, E. J. (2002). Effects of creatine use on the athlete’s kidney. Current sports medicine reports, 1(2), 103–106. https://doi.org/10.1249/00149619-200204000-00007
[126] Jäger, R., Purpura, M., Shao, A., Inoue, T., & Kreider, R. B. (2011). Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino acids, 40(5), 1369–1383. https://doi.org/10.1007/s00726-011-0874-6
[127] Vannas-Sulonen, K., Sipilä, I., Vannas, A., Simell, O., & Rapola, J. (1985). Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology, 92(12), 1719–1727. https://doi.org/10.1016/s0161-6420(85)34098-8
[128] Poortmans, J. R., & Francaux, M. (1999). Long-term oral creatine supplementation does not impair renal function in healthy athletes. Medicine and science in sports and exercise, 31(8), 1108–1110. https://doi.org/10.1097/00005768-199908000-00005
[129] Gualano, B., de Salles Painelli, V., Roschel, H., Lugaresi, R., Dorea, E., Artioli, G. G., Lima, F. R., da Silva, M. E., Cunha, M. R., Seguro, A. C., Shimizu, M. H., Otaduy, M. C., Sapienza, M. T., da Costa Leite, C., Bonfá, E., & Lancha Junior, A. H. (2011). Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. European journal of applied physiology, 111(5), 749–756. https://doi.org/10.1007/s00421-010-1676-3
[130] Taes, Y. E., Delanghe, J. R., De Bacquer, D., Langlois, M., Stevens, L., Geerolf, I., Lameire, N. H., & De Vriese, A. S. (2004). Creatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patients. Kidney international, 66(6), 2422–2428. https://doi.org/10.1111/j.1523-1755.2004.66019.x
[131] Poortmans, J. R., & Francaux, M. (2000). Adverse effects of creatine supplementation: fact or fiction?. Sports medicine (Auckland, N.Z.), 30(3), 155–170. https://doi.org/10.2165/00007256-200030030-00002
[132] Pline, K. A., & Smith, C. L. (2005). The effect of creatine intake on renal function. The Annals of pharmacotherapy, 39(6), 1093–1096. https://doi.org/10.1345/aph.1E628
[133] Persky, A. M., & Rawson, E. S. (2007). Safety of creatine supplementation. Sub-cellular biochemistry, 46, 275–289. https://doi.org/10.1007/978-1-4020-6486-9_14
[134] Persky, A. M., & Brazeau, G. A. (2001). Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacological reviews, 53(2), 161–176.
[135] Kreider R. B. (2003). Effects of creatine supplementation on performance and training adaptations. Molecular and cellular biochemistry, 244(1-2), 89–94.
[136] Casey, A., Constantin-Teodosiu, D., Howell, S., Hultman, E., & Greenhaff, P. L. (1996). Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. The American journal of physiology, 271(1 Pt 1), E31–E37. https://doi.org/10.1152/ajpendo.1996.271.1.E31
[137] Steenge, G. R., Simpson, E. J., & Greenhaff, P. L. (2000). Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of applied physiology (Bethesda, Md. : 1985), 89(3), 1165–1171. https://doi.org/10.1152/jappl.2000.89.3.1165
[138] Greenwood, M., Kreider, R., Earnest, C., Rasmussen, C., & Almada, A. (2003). DIFFERENCES IN CREATINE RETENTION AMONG THREE NUTRITIONAL FORMULATIONS OF ORAL CREATINE SUPPLEMENTS. Journal of exercise physiology online, 6(2).
[139] Wallimann, T., Tokarska-Schlattner, M., & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino acids, 40(5), 1271–1296. https://doi.org/10.1007/s00726-011-0877-3
[140] Kim, H. J., Kim, C. K., Carpentier, A., & Poortmans, J. R. (2011). Studies on the safety of creatine supplementation. Amino acids, 40(5), 1409–1418. https://doi.org/10.1007/s00726-011-0878-2
​​[141] Wu G. (2014). Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. Journal of animal science and biotechnology, 5(1), 34. https://doi.org/10.1186/2049-1891-5-34
[142] Breen, L., & Churchward-Venne, T. A. (2012). Leucine: a nutrient ‚trigger‘ for muscle anabolism, but what more?. The Journal of physiology, 590(9), 2065–2066. https://doi.org/10.1113/jphysiol.2012.230631
[143] Spillane, M., Emerson, C., & Willoughby, D. S. (2012). The effects of 8 weeks of heavy resistance training and branched-chain amino acid supplementation on body composition and muscle performance. Nutrition and health, 21(4), 263–273. https://doi.org/10.1177/0260106013510999
[144] Aguiar, A. F., Grala, A. P., da Silva, R. A., Soares-Caldeira, L. F., Pacagnelli, F. L., Ribeiro, A. S., da Silva, D. K., de Andrade, W. B., & Balvedi, M. C. W. (2017). Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino acids, 49(7), 1255–1262. https://doi.org/10.1007/s00726-017-2427-0
[145] DE Andrade, I. T., Gualano, B., Hevia-Larraín, V., Neves-Junior, J., Cajueiro, M., Jardim, F., Gomes, R. L., Artioli, G. G., Phillips, S. M., Campos-Ferraz, P., & Roschel, H. (2020). Leucine Supplementation Has No Further Effect on Training-induced Muscle Adaptations. Medicine and science in sports and exercise, 52(8), 1809–1814. https://doi.org/10.1249/MSS.0000000000002307
[146] Mobley, C. B., Mumford, P. W., McCarthy, J. J., Miller, M. E., Young, K. C., Martin, J. S., Beck, D. T., Lockwood, C. M., & Roberts, M. D. (2017). Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2-C12 myotubes. Journal of dairy science, 100(1), 48–64. https://doi.org/10.3168/jds.2016-11341
[147] Esteghamati, A., Mazaheri, T., Vahidi Rad, M., & Noshad, S. (2015). Complementary and alternative medicine for the treatment of obesity: a critical review. International journal of endocrinology and metabolism, 13(2), e19678. https://doi.org/10.5812/ijem.19678
[148] Jeukendrup, A. E., & Randell, R. (2011). Fat burners: nutrition supplements that increase fat metabolism. Obesity reviews : an official journal of the International Association for the Study of Obesity, 12(10), 841–851. https://doi.org/10.1111/j.1467-789X.2011.00908.x
[149] Ríos-Hoyo, A., & Gutiérrez-Salmeán, G. (2016). New Dietary Supplements for Obesity: What We Currently Know. Current obesity reports, 5(2), 262–270. https://doi.org/10.1007/s13679-016-0214-y
[150] Saper, R. B., Eisenberg, D. M., & Phillips, R. S. (2004). Common dietary supplements for weight loss. American family physician, 70(9), 1731–1738.
[151] Schulman S. (2003). Addressing the potential risks associated with ephedra use: a review of recent efforts. Public health reports (Washington, D.C. : 1974), 118(6), 487–492. https://doi.org/10.1093/phr/118.6.487
[152] Shekelle, P. G., Hardy, M. L., Morton, S. C., Maglione, M., Mojica, W. A., Suttorp, M. J., Rhodes, S. L., Jungvig, L., & Gagné, J. (2003). Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA, 289(12), 1537–1545. https://doi.org/10.1001/jama.289.12.1537
[153] Soni, M. G., Carabin, I. G., Griffiths, J. C., & Burdock, G. A. (2004). Safety of ephedra: lessons learned. Toxicology letters, 150(1), 97–110. https://doi.org/10.1016/j.toxlet.2003.07.006
[154] Clark J. E. (2015). Diet, exercise or diet with exercise: comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18-65 years old) who are overfat, or obese; systematic review and meta-analysis. Journal of diabetes and metabolic disorders, 14, 31. https://doi.org/10.1186/s40200-015-0154-1
[155] Clark J. E. (2016). The impact of duration on effectiveness of exercise, the implication for periodization of training and goal setting for individuals who are overfat, a meta-analysis. Biology of sport, 33(4), 309–333. https://doi.org/10.5604/20831862.1212974
[156] Clark, James. (2018). Diets and Diet Therapy: Diet Supplements for Exercise. 10.1016/B978-0-08-100596-5.21957-4.
[157] Donsmark, M., Langfort, J., Holm, C., Ploug, T., & Galbo, H. (2005). Hormone-sensitive lipase as mediator of lipolysis in contracting skeletal muscle. Exercise and sport sciences reviews, 33(3), 127–133. https://doi.org/10.1097/00003677-200507000-00005
[158] Gurley, B. J., Gardner, S. F., White, L. M., & Wang, P. L. (1998). Ephedrine pharmacokinetics after the ingestion of nutritional supplements containing Ephedra sinica (ma huang). Therapeutic drug monitoring, 20(4), 439–445. https://doi.org/10.1097/00007691-199808000-00015
[159] Haller, C. A., Jacob, P., 3rd, & Benowitz, N. L. (2002). Pharmacology of ephedra alkaloids and caffeine after single-dose dietary supplement use. Clinical pharmacology and therapeutics, 71(6), 421–432. https://doi.org/10.1067/mcp.2002.124523
[160] Haller, C. A., Jacob, P., 3rd, & Benowitz, N. L. (2004). Enhanced stimulant and metabolic effects of combined ephedrine and caffeine. Clinical pharmacology and therapeutics, 75(4), 259–273. https://doi.org/10.1016/j.clpt.2003.11.375
[161] Jenkinson, D. M., & Harbert, A. J. (2008). Supplements and sports. American family physician, 78(9), 1039–1046.
[162] Nogiec, C. D., & Kasif, S. (2013). To supplement or not to supplement: a metabolic network framework for human nutritional supplements. PloS one, 8(8), e68751. https://doi.org/10.1371/journal.pone.0068751
[163] Stohs, S. J., Preuss, H. G., & Shara, M. (2011). A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxidative medicine and cellular longevity, 2011, 482973. https://doi.org/10.1155/2011/482973
[164] Coulter, A. A., Rebello, C. J., & Greenway, F. L. (2018). Centrally Acting Agents for Obesity: Past, Present, and Future. Drugs, 78(11), 1113–1132. https://doi.org/10.1007/s40265-018-0946-y
[165] Calfee, R., & Fadale, P. (2006). Popular ergogenic drugs and supplements in young athletes. Pediatrics, 117(3), e577–e589. https://doi.org/10.1542/peds.2005-1429
[166] Ekor M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology, 4, 177. https://doi.org/10.3389/fphar.2013.00177
[167] Heuberger, J. A. A. C., & Cohen, A. F. (2019). Review of WADA Prohibited Substances: Limited Evidence for Performance-Enhancing Effects. Sports medicine (Auckland, N.Z.), 49(4), 525–539. https://doi.org/10.1007/s40279-018-1014-1
[168] Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y
[169] Liu, Y., Sun, M., Yao, H., Liu, Y., & Gao, R. (2017). Herbal Medicine for the Treatment of Obesity: An Overview of Scientific Evidence from 2007 to 2017. Evidence-based complementary and alternative medicine : eCAM, 2017, 8943059. https://doi.org/10.1155/2017/8943059
[170] Shekelle, P. G., Hardy, M. L., Morton, S. C., Maglione, M., Mojica, W. A., Suttorp, M. J., Rhodes, S. L., Jungvig, L., & Gagné, J. (2003). Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA, 289(12), 1537–1545. https://doi.org/10.1001/jama.289.12.1537
[171] Watanabe, M., Risi, R., Masi, D., Caputi, A., Balena, A., Rossini, G., Tuccinardi, D., Mariani, S., Basciani, S., Manfrini, S., Gnessi, L., & Lubrano, C. (2020). Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients, 12(9), 2873. https://doi.org/10.3390/nu12092873
[172] Clark, J. E., & Welch, S. (2021). Comparing effectiveness of fat burners and thermogenic supplements to diet and exercise for weight loss and cardiometabolic health: Systematic review and meta-analysis. Nutrition and health, 27(4), 445–459. https://doi.org/10.1177/0260106020982362
[173] Burke L. M. (2008). Caffeine and sports performance. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 33(6), 1319–1334. https://doi.org/10.1139/H08-130
[174] Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor, L., Willoughby, D., Stout, J., Graves, B. S., Wildman, R., Ivy, J. L., Spano, M., Smith, A. E., & Antonio, J. (2010). International society of sports nutrition position stand: caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. https://doi.org/10.1186/1550-2783-7-5
[175] Spriet L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports medicine (Auckland, N.Z.), 44 Suppl 2(Suppl 2), S175–S184. https://doi.org/10.1007/s40279-014-0257-8
[176] French, C., McNaughton, L., Davies, P., & Tristram, S. (1991). Caffeine ingestion during exercise to exhaustion in elite distance runners. Revision. The Journal of sports medicine and physical fitness, 31(3), 425–432.
[177] Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European journal of sport science, 13(4), 392–399. https://doi.org/10.1080/17461391.2011.635811
[178] Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport-specific endurance performance: a systematic review. Journal of strength and conditioning research, 23(1), 315–324. https://doi.org/10.1519/JSC.0b013e31818b979a
[179] Bruce, C. R., Anderson, M. E., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Enhancement of 2000-m rowing performance after caffeine ingestion. Medicine and science in sports and exercise, 32(11), 1958–1963. https://doi.org/10.1097/00005768-200011000-00021
[180] Gonçalves, L. S., Painelli, V. S., Yamaguchi, G., Oliveira, L. F., Saunders, B., da Silva, R. P., Maciel, E., Artioli, G. G., Roschel, H., & Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of applied physiology (Bethesda, Md. : 1985), 123(1), 213–220. https://doi.org/10.1152/japplphysiol.00260.2017
[181] Talanian, J. L., & Spriet, L. L. (2016). Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(8), 850–855. https://doi.org/10.1139/apnm-2016-0053
[182] Paton, C., Costa, V., & Guglielmo, L. (2015). Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. Journal of sports sciences, 33(10), 1076–1083. https://doi.org/10.1080/02640414.2014.984752
[183] Lara, B., Ruiz-Moreno, C., Salinero, J. J., & Del Coso, J. (2019). Time course of tolerance to the performance benefits of caffeine. PloS one, 14(1), e0210275. https://doi.org/10.1371/journal.pone.0210275
[184] Beaumont, R., Cordery, P., Funnell, M., Mears, S., James, L., & Watson, P. (2017). Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. Journal of sports sciences, 35(19), 1920–1927. https://doi.org/10.1080/02640414.2016.1241421
[185] Rothschild, J. A., & Bishop, D. J. (2020). Effects of Dietary Supplements on Adaptations to Endurance Training. Sports medicine (Auckland, N.Z.), 50(1), 25–53. https://doi.org/10.1007/s40279-019-01185-8
[186] Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159(4), 738–749. https://doi.org/10.1016/j.cell.2014.10.029
[187] Branch J. D. (2003). Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism, 13(2), 198–226. https://doi.org/10.1123/ijsnem.13.2.198
[188] Balsom, P.D., Ekblom, B., Söerlund, K., Sjödln, B. and Hultman, E. (1993), Creatine supplementation and dynamic high-intensity intermittent exercise. Scandinavian Journal of Medicine & Science in Sports, 3: 143-149. https://doi.org/10.1111/j.1600-0838.1993.tb00378.x
[189] Izquierdo, M., Ibañez, J., González-Badillo, J. J., & Gorostiaga, E. M. (2002). Effects of creatine supplementation on muscle power, endurance, and sprint performance. Medicine and science in sports and exercise, 34(2), 332–343. https://doi.org/10.1097/00005768-200202000-00023
[190] Graef, J. L., Smith, A. E., Kendall, K. L., Fukuda, D. H., Moon, J. R., Beck, T. W., Cramer, J. T., & Stout, J. R. (2009). The effects of four weeks of creatine supplementation and high-intensity interval training on cardiorespiratory fitness: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 6, 18. https://doi.org/10.1186/1550-2783-6-18
[191] Barnett, C., Hinds, M., & Jenkins, D. G. (1996). Effects of oral creatine supplementation on multiple sprint cycle performance. Australian journal of science and medicine in sport, 28(1), 35–39.
[192] Cañete, S., San Juan, A. F., Pérez, M., Gómez-Gallego, F., López-Mojares, L. M., Earnest, C. P., Fleck, S. J., & Lucia, A. (2006). Does creatine supplementation improve functional capacity in elderly women?. Journal of strength and conditioning research, 20(1), 22–28. https://doi.org/10.1519/R-17044.1
[193] Eijnde, B. O., Van Leemputte, M., Goris, M., Labarque, V., Taes, Y., Verbessem, P., Vanhees, L., Ramaekers, M., Vanden Eynde, B., Van Schuylenbergh, R., Dom, R., Richter, E. A., & Hespel, P. (2003). Effects of creatine supplementation and exercise training on fitness in men 55-75 yr old. Journal of applied physiology (Bethesda, Md. : 1985), 95(2), 818–828. https://doi.org/10.1152/japplphysiol.00891.2002
[194] Syrotuik, D. G., Game, A. B., Gillies, E. M., & Bell, G. J. (2001). Effects of creatine monohydrate supplementation during combined strength and high intensity rowing training on performance. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee, 26(6), 527–542. https://doi.org/10.1139/h01-029
[195] Forbes, S. C., Sletten, N., Durrer, C., Myette-Côté, É., Candow, D., & Little, J. P. (2017). Creatine Monohydrate Supplementation Does Not Augment Fitness, Performance, or Body Composition Adaptations in Response to Four Weeks of High-Intensity Interval Training in Young Females. International journal of sport nutrition and exercise metabolism, 27(3), 285–292. https://doi.org/10.1123/ijsnem.2016-0129
[196] Engelhardt, M., Neumann, G., Berbalk, A., & Reuter, I. (1998). Creatine supplementation in endurance sports. Medicine and science in sports and exercise, 30(7), 1123–1129. https://doi.org/10.1097/00005768-199807000-00016
[197] Miura, A., Kino, F., Kajitani, S., Sato, H., & Fukuba, Y. (1999). The effect of oral creatine supplementation on the curvature constant parameter of the power-duration curve for cycle ergometry in humans. The Japanese journal of physiology, 49(2), 169–174. https://doi.org/10.2170/jjphysiol.49.169
[198] Stroud, M. A., Holliman, D., Bell, D., Green, A. L., Macdonald, I. A., & Greenhaff, P. L. (1994). Effect of oral creatine supplementation on respiratory gas exchange and blood lactate accumulation during steady-state incremental treadmill exercise and recovery in man. Clinical science (London, England : 1979), 87(6), 707–710. https://doi.org/10.1042/cs0870707
[199] Bellinger, B. M., Bold, A., Wilson, G. R., Noakes, T. D., & Myburgh, K. H. (2000). Oral creatine supplementation decreases plasma markers of adenine nucleotide degradation during a 1-h cycle test. Acta physiologica Scandinavica, 170(3), 217–224. https://doi.org/10.1046/j.1365-201x.2000.00777.x
[200] De Andrade Nemezio, K. M., Bertuzzi, R., Correia-Oliveira, C. R., Gualano, B., Bishop, D. J., & Lima-Silva, A. E. (2015). Effect of Creatine Loading on Oxygen Uptake during a 1-km Cycling Time Trial. Medicine and science in sports and exercise, 47(12), 2660–2668. https://doi.org/10.1249/MSS.0000000000000718
[201] Jones, A. M., Carter, H., Pringle, J. S., & Campbell, I. T. (2002). Effect of creatine supplementation on oxygen uptake kinetics during submaximal cycle exercise. Journal of applied physiology (Bethesda, Md. : 1985), 92(6), 2571–2577. https://doi.org/10.1152/japplphysiol.01065.2001
[202] McNaughton, L. R., Dalton, B., & Tarr, J. (1998). The effects of creatine supplementation on high-intensity exercise performance in elite performers. European journal of applied physiology and occupational physiology, 78(3), 236–240. https://doi.org/10.1007/s004210050413
[203] Rossiter, H. B., Cannell, E. R., & Jakeman, P. M. (1996). The effect of oral creatine supplementation on the 1000-m performance of competitive rowers. Journal of sports sciences, 14(2), 175–179. https://doi.org/10.1080/02640419608727699
[204] Maganaris, C. N., & Maughan, R. J. (1998). Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men. Acta physiologica Scandinavica, 163(3), 279–287. https://doi.org/10.1046/j.1365-201x.1998.00395.x
[205] Prevost, M. C., Nelson, A. G., & Morris, G. S. (1997). Creatine supplementation enhances intermittent work performance. Research quarterly for exercise and sport, 68(3), 233–240. https://doi.org/10.1080/02701367.1997.10608002
[206] Jakobi, J. M., Rice, C. L., Curtin, S. V., & Marsh, G. D. (2000). Contractile properties, fatigue and recovery are not influenced by short-term creatine supplementation in human muscle. Experimental physiology, 85(4), 451–460.
[207] Vandebuerie, F., Vanden Eynde, B., Vandenberghe, K., & Hespel, P. (1998). Effect of creatine loading on endurance capacity and sprint power in cyclists. International journal of sports medicine, 19(7), 490–495. https://doi.org/10.1055/s-2007-971950
[208] Chwalbiñska-Moneta J. (2003). Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. International journal of sport nutrition and exercise metabolism, 13(2), 173–183. https://doi.org/10.1123/ijsnem.13.2.173
[209] Kendall, K. L., Smith, A. E., Graef, J. L., Fukuda, D. H., Moon, J. R., Beck, T. W., Cramer, J. T., & Stout, J. R. (2009). Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. Journal of strength and conditioning research, 23(6), 1663–1669. https://doi.org/10.1519/JSC.0b013e3181b1fd1f
[210] Fernández-Landa, J., Fernández-Lázaro, D., Calleja-González, J., Caballero-García, A., Córdova Martínez, A., León-Guereño, P., & Mielgo-Ayuso, J. (2020). Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients, 12(1), 193. https://doi.org/10.3390/nu12010193
[211] Mujika, I., & Padilla, S. (1997). Creatine supplementation as an ergogenic aid for sports performance in highly trained athletes: a critical review. International journal of sports medicine, 18(7), 491–496. https://doi.org/10.1055/s-2007-972670
[212] Mielgo-Ayuso, J., Calleja-Gonzalez, J., Marqués-Jiménez, D., Caballero-García, A., Córdova, A., & Fernández-Lázaro, D. (2019). Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients, 11(4), 757. https://doi.org/10.3390/nu11040757
[213] Green, A. L., Hultman, E., Macdonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. The American journal of physiology, 271(5 Pt 1), E821–E826. https://doi.org/10.1152/ajpendo.1996.271.5.E821
[214] Steenge, G. R., Simpson, E. J., & Greenhaff, P. L. (2000). Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of applied physiology (Bethesda, Md. : 1985), 89(3), 1165–1171. https://doi.org/10.1152/jappl.2000.89.3.1165
[215] Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y
[216] Cooke, M. B., Rybalka, E., Williams, A. D., Cribb, P. J., & Hayes, A. (2009). Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. Journal of the International Society of Sports Nutrition, 6, 13. https://doi.org/10.1186/1550-2783-6-13
[217] Cooke, M. B., Rybalka, E., Stathis, C. G., & Hayes, A. (2018). Myoprotective Potential of Creatine Is Greater than Whey Protein after Chemically-Induced Damage in Rat Skeletal Muscle. Nutrients, 10(5), 553. https://doi.org/10.3390/nu10050553
[218] Volek, J. S., Mazzetti, S. A., Farquhar, W. B., Barnes, B. R., Gómez, A. L., & Kraemer, W. J. (2001). Physiological responses to short-term exercise in the heat after creatine loading. Medicine and science in sports and exercise, 33(7), 1101–1108. https://doi.org/10.1097/00005768-200107000-00006
[219] Weiss, B. A., & Powers, M. E. (2006). Creatine supplementation does not impair the thermoregulatory response during a bout of exercise in the heat. The Journal of sports medicine and physical fitness, 46(4), 555–563.
[220] Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14, 18. https://doi.org/10.1186/s12970-017-0173-z
[221] Antonio, J., Candow, D. G., Forbes, S. C., Gualano, B., Jagim, A. R., Kreider, R. B., Rawson, E. S., Smith-Ryan, A. E., VanDusseldorp, T. A., Willoughby, D. S., & Ziegenfuss, T. N. (2021). Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. Journal of the International Society of Sports Nutrition, 18(1), 13. https://doi.org/10.1186/s12970-021-00412-w
[222] Lopez, R. M., Casa, D. J., McDermott, B. P., Ganio, M. S., Armstrong, L. E., & Maresh, C. M. (2009). Does creatine supplementation hinder exercise heat tolerance or hydration status? A systematic review with meta-analyses. Journal of athletic training, 44(2), 215–223. https://doi.org/10.4085/1062-6050-44.2.215
[223] Shaltout, H. A., Eggebeen, J., Marsh, A. P., Brubaker, P. H., Laurienti, P. J., Burdette, J. H., Basu, S., Morgan, A., Dos Santos, P. C., Norris, J. L., Morgan, T. M., Miller, G. D., Rejeski, W. J., Hawfield, A. T., Diz, D. I., Becton, J. T., Kim-Shapiro, D. B., & Kitzman, D. W. (2017). Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric oxide : biology and chemistry, 69, 78–90. https://doi.org/10.1016/j.niox.2017.05.005
[224] Larsen, F. J., Weitzberg, E., Lundberg, J. O., & Ekblom, B. (2007). Effects of dietary nitrate on oxygen cost during exercise. Acta physiologica (Oxford, England), 191(1), 59–66. https://doi.org/10.1111/j.1748-1716.2007.01713.x
[225] Domínguez, R., Cuenca, E., Maté-Muñoz, J. L., García-Fernández, P., Serra-Paya, N., Estevan, M. C., Herreros, P. V., & Garnacho-Castaño, M. V. (2017). Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients, 9(1), 43. https://doi.org/10.3390/nu9010043
[226] McMahon, N. F., Leveritt, M. D., & Pavey, T. G. (2017). The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 47(4), 735–756. https://doi.org/10.1007/s40279-016-0617-7
[227] Getzin, A. R., Milner, C., & Harkins, M. (2017). Fueling the Triathlete: Evidence-Based Practical Advice for Athletes of All Levels. Current sports medicine reports, 16(4), 240–246. https://doi.org/10.1249/JSR.0000000000000386
[228] Jonvik, K. L., Nyakayiru, J., van Loon, L. J., & Verdijk, L. B. (2015). Can elite athletes benefit from dietary nitrate supplementation?. Journal of applied physiology (Bethesda, Md. : 1985), 119(6), 759–761. https://doi.org/10.1152/japplphysiol.00232.2015
[229] Krabak, B. J., Parker, K. M., & DiGirolamo, A. (2016). Exercise-Associated Collapse: Is Hyponatremia in Our Head?. PM & R : the journal of injury, function, and rehabilitation, 8(3 Suppl), S61–S68. https://doi.org/10.1016/j.pmrj.2015.10.002
[230] Porcelli, S., Pugliese, L., Rejc, E., Pavei, G., Bonato, M., Montorsi, M., La Torre, A., Rasica, L., & Marzorati, M. (2016). Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients, 8(9), 534. https://doi.org/10.3390/nu8090534
[231] Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y
[232] Clifford, T., Constantinou, C. M., Keane, K. M., West, D. J., Howatson, G., & Stevenson, E. J. (2017). The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. European journal of nutrition, 56(3), 1245–1254. https://doi.org/10.1007/s00394-016-1173-5
[233] McIlvenna, L. C., Monaghan, C., Liddle, L., Fernandez, B. O., Feelisch, M., Muggeridge, D. J., & Easton, C. (2017). Beetroot juice versus chard gel: A pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability. Nitric oxide : biology and chemistry, 64, 61–67. https://doi.org/10.1016/j.niox.2016.12.006
[234] Getzin, A. R., Milner, C., & LaFace, K. M. (2011). Nutrition update for the ultraendurance athlete. Current sports medicine reports, 10(6), 330–339. https://doi.org/10.1249/JSR.0b013e318237fcdf
[235] Larsen, F. J., Ekblom, B., Sahlin, K., Lundberg, J. O., & Weitzberg, E. (2006). Effects of dietary nitrate on blood pressure in healthy volunteers. The New England journal of medicine, 355(26), 2792–2793. https://doi.org/10.1056/NEJMc062800
[236] Gomez-Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., & Viña, J. (2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of physiology, 567(Pt 1), 113–120. https://doi.org/10.1113/jphysiol.2004.080564
[237] Gomez-Cabrera, M. C., Martínez, A., Santangelo, G., Pallardó, F. V., Sastre, J., & Viña, J. (2006). Oxidative stress in marathon runners: interest of antioxidant supplementation. The British journal of nutrition, 96 Suppl 1, S31–S33. https://doi.org/10.1079/bjn20061696
[238] Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V., Sastre, J., & Viña, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. The American journal of clinical nutrition, 87(1), 142–149. https://doi.org/10.1093/ajcn/87.1.142
[239] Gomez-Cabrera, M. C., Domenech, E., & Viña, J. (2008). Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free radical biology & medicine, 44(2), 126–131. https://doi.org/10.1016/j.freeradbiomed.2007.02.001
[240] Vitale, K. C., Hueglin, S., & Broad, E. (2017). Tart Cherry Juice in Athletes: A Literature Review and Commentary. Current sports medicine reports, 16(4), 230–239. https://doi.org/10.1249/JSR.0000000000000385
[241] Jówko, E. (2015). Green Tea Catechins and Sport Performance. In M. Lamprecht (Ed.), Antioxidants in Sport Nutrition. CRC Press/Taylor & Francis.
[242] Rourke S. Drinking Tea: Are the Health Benefits Real? [(accessed on 3 April 2019)];Available online: http://www.medscape.com/viewarticle/907456
[243] Kim, J., Park, J., & Lim, K. (2016). Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. Journal of nutritional science and vitaminology, 62(3), 141–161. https://doi.org/10.3177/jnsv.62.141
[244] Hursel, R., Viechtbauer, W., Dulloo, A. G., Tremblay, A., Tappy, L., Rumpler, W., & Westerterp-Plantenga, M. S. (2011). The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity, 12(7), e573–e581. https://doi.org/10.1111/j.1467-789X.2011.00862.x
[245] Palmatier, M. A., Kang, A. M., & Kidd, K. K. (1999). Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biological psychiatry, 46(4), 557–567. https://doi.org/10.1016/s0006-3223(99)00098-0
[246] Murase, T., Haramizu, S., Shimotoyodome, A., Nagasawa, A., & Tokimitsu, I. (2005). Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American journal of physiology. Regulatory, integrative and comparative physiology, 288(3), R708–R715. https://doi.org/10.1152/ajpregu.00693.2004
[247] Murase, T., Haramizu, S., Shimotoyodome, A., Tokimitsu, I., & Hase, T. (2006). Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. American journal of physiology. Regulatory, integrative and comparative physiology, 290(6), R1550–R1556. https://doi.org/10.1152/ajpregu.00752.2005
[248] Partnerships Informed Choice. [(accessed on 3 April 2019)]; Available online: https://www.informed-choice.org/partnerships[Ref list]
[249] Nichols A. W. (2007). Probiotics and athletic performance: a systematic review. Current sports medicine reports, 6(4), 269–273.
[250] Spence, L., Brown, W. J., Pyne, D. B., Nissen, M. D., Sloots, T. P., McCormack, J. G., Locke, A. S., & Fricker, P. A. (2007). Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Medicine and science in sports and exercise, 39(4), 577–586. https://doi.org/10.1249/mss.0b013e31802e851a
[251] Leite, G. S. F., Resende Master Student, A. S., West, N. P., & Lancha, A. H., Jr (2019). Probiotics and sports: A new magic bullet?. Nutrition (Burbank, Los Angeles County, Calif.), 60, 152–160. https://doi.org/10.1016/j.nut.2018.09.023
[252] Coqueiro, A. Y., de Oliveira Garcia, A. B., Rogero, M. M., & Tirapegui, J. (2017). Probiotic supplementation in sports and physical exercise: Does it present any ergogenic effect?. Nutrition and health, 23(4), 239–249. https://doi.org/10.1177/0260106017721000