Einführung in die Hypertrophie

Muskelhypertrophie ist das Wachstum von Muskelzellen durch Krafttraining. Dies erfordert ein Verständnis der grundlegenden Mechanismen, die das Muskelwachstum anregen: mechanische Spannung, metabolischer Stress und Muskelschäden. Diese Faktoren müssen in einem gut strukturierten Trainingsplan kombiniert werden, um optimale Ergebnisse zu erzielen.

Mechanische Spannung

Mechanische Spannung entsteht, wenn Muskeln gegen Widerstand arbeiten. Um Hypertrophie zu fördern, muss die Belastung kontinuierlich erhöht werden, ein Prinzip, das als progressive Überlastung bekannt ist. Dies kann durch Steigerung des Gewichts, der Wiederholungszahlen oder der Trainingshäufigkeit erreicht werden.

Metabolischer Stress

Metabolischer Stress entsteht durch die Ansammlung von Metaboliten wie Laktat während intensiver Anstrengung. Techniken wie Supersätze, abnehmende Sätze und kurze Pausen können diesen Stress erhöhen und so das Muskelwachstum fördern.

Muskelschäden

Muskelschäden treten durch intensives Training auf und initiieren Reparaturprozesse, die zur Hypertrophie führen. Exzentrische Übungen, bei denen die Muskeln während der Verlängerungsphase belastet werden, sind besonders effektiv, um diese Schäden zu verursachen.

 

 

Trainingsprinzipien für Hypertrophie

Progressive Überlastung

Ein Schlüsselelement für Muskelwachstum ist die progressive Überlastung, bei der die Trainingsintensität stetig erhöht wird. Dies kann durch höhere Gewichte, mehr Wiederholungen oder häufigere Trainingseinheiten erreicht werden.

Trainingsvolumen und -intensität

Das Trainingsvolumen (Gesamtzahl der Sätze und Wiederholungen) und die Intensität (prozentualer Anteil des maximalen Gewichts) sind entscheidend für die Hypertrophie. Ein höheres Volumen bei moderater Intensität hat sich als besonders effektiv erwiesen.

Time Under Tension (TUT)

Die Zeit, in der ein Muskel während einer Übung unter Spannung steht, ist ebenfalls wichtig. Längere TUTs, z.B. durch langsamere Wiederholungen, können das Muskelwachstum fördern.

Trainingsfrequenz

Die Trainingsfrequenz bezieht sich auf die Anzahl der Trainingseinheiten pro Woche. Für die meisten Menschen ist eine Frequenz von 2-3 Mal pro Muskelgruppe pro Woche optimal.

Übungswahl und -abfolge

Eine Kombination aus Grundübungen (z.B. Kniebeugen, Bankdrücken) und Isolationsübungen (z.B. Bizepscurls) sorgt für umfassende Muskelstimulation. Grundübungen sollten in der Regel zu Beginn des Trainings durchgeführt werden, wenn die Energie- und Kraftreserven am höchsten sind.

Split-Routine vs. Ganzkörpertraining

Bei Split-Routinen wird der Körper in verschiedene Muskelgruppen aufgeteilt, die an unterschiedlichen Tagen trainiert werden. Ganzkörpertraining trainiert alle Muskelgruppen in einer einzigen Sitzung. Beide Methoden haben ihre Vorteile und können je nach individuellen Zielen und Zeitplan angewendet werden.

Periodisierung

Periodisierung ist die geplante Variation von Trainingsparametern wie Volumen und Intensität. Diese Methode hilft, Plateaus zu vermeiden und kontinuierliche Fortschritte zu erzielen.

Erholung und Ernährung

Erholung ist für das Muskelwachstum ebenso wichtig wie das Training selbst. Ausreichend Schlaf (7-9 Stunden pro Nacht) und Ruhephasen zwischen den Trainingseinheiten sind entscheidend. Ernährung spielt ebenfalls eine große Rolle; eine proteinreiche Ernährung unterstützt die Muskelreparatur und -wachstum.

Individuelle Anpassung

Jeder Körper reagiert unterschiedlich auf Trainingsreize. Es ist wichtig, den Trainingsplan an die eigenen Bedürfnisse und Fortschritte anzupassen. Fortschritte sollten regelmäßig gemessen und der Plan entsprechend angepasst werden.

Verletzungsprävention

Verletzungen können das Training erheblich beeinträchtigen. Eine korrekte Technik, ausreichendes Aufwärmen und die Vermeidung von Übertraining sind entscheidend, um Verletzungen vorzubeugen.

Schlussfolgerung

Muskelhypertrophie erfordert einen gut durchdachten und strukturierten Trainingsplan, der auf wissenschaftlichen Prinzipien basiert. Die Berücksichtigung von mechanischer Spannung, metabolischem Stress und Muskelschäden, kombiniert mit progressiver Überlastung und individueller Anpassung, führt zu optimalen Ergebnissen.

Dein DK Sports & Physio Team aus der Karlsruher Oststadt

Den ausführlichen Artikel findest du in unserer DK Academy.

Wir geben Physiotherapeuten, Trainern und allen Wissbegierigen einen sachlichen Einblick in die Physiotherapie und helfen so die Rehabilitation und das Training nach Verletzungen oder Beschwerden effizienter zu gestalten.

Sichere dir vollen Zugriff auf unsere Rehab Live Sessions, exklusive Review- und Blogartikel, Simple Tipps und Infografiken.

Du benötigst Physiotherapie im Raum Karlsruhe? Dann sind wir gerne für dich da und unterstützen dich!

Dein DK Sports & Physio Team aus der Karlsruher Oststadt

Vereinbare hier direkt einen Termin

Quellenangaben:

[1] Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010 Oct;24(10):2857-72. doi: 10.1519/JSC.0b013e3181e840f3. PMID: 20847704.

[2] Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A critical evaluation of the biological construct skeletal muscle hypertrophy: Size matters but so does the measurement. Front Physiol. 2019 May 15;10:247. doi: 10.3389/fphys.2019.00247. PMID: 31134042.

[3] Roberts MD, Haun CT, Vann CG, Osburn SC, Young KC. Sarcoplasmic hypertrophy in skeletal muscle: A scientific “unicorn” or resistance training adaptation? Front Physiol. 2020 Sep 29;11:816. doi: 10.3389/fphys.2020.00816. PMID: 33117364.

[4] Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013 Mar;43(3):179-94. doi: 10.1007/s40279-013-0017-1. PMID: 23361877.

[5] Schoenfeld BJ. Science and Development of Muscle Hypertrophy. Human Kinetics; 2016. ISBN: 978-1-4925-0160-4.

[6] Saeidifard F, Medina-Inojosa JR, Supervia M, Olson TP, Somers VK, Erwin PJ, Lopez-Jimenez F. The effect of resistance training on all-cause mortality: A systematic review and meta-analysis of randomized controlled trials. J Am Med Dir Assoc. 2019 Mar;20(3):323-329. doi: 10.1016/j.jamda.2018.10.021. PMID: 30581118.

[7] García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, Martínez-Vizcaíno V. Muscular strength as a predictor of all-cause mortality in apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018 Oct;99(10):2100-2113.e5. doi: 10.1016/j.apmr.2018.01.008. PMID: 29382515.

[8] Wewege MA, Desai I, Honey C, Coorie H, Jones MD. The effects of high vs low load resistance training on fat mass and fat-free mass in adults: A systematic review and meta-analysis. Obes Rev. 2022 Mar;23(3). doi: 10.1111/obr.13390. PMID: 34778918.

[9] Lopez P, Pinto RS, Radaelli R, Rech A, Grazioli R, Izquierdo M, Cadore EL. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin Exp Res. 2022 Jan;34(1):139-158. doi: 10.1007/s40520-021-01917-3. PMID: 34236667.

[10] Correia MA, dos Santos MR, de Farias Junior LF, Pereira DS, Dantas PMS. Resistance training improves cardiovascular risk factors in elderly with prediabetes: A randomized controlled trial. Exp Gerontol. 2023 Feb;169:111957. doi: 10.1016/j.exger.2023.111957. PMID: 36662539.

[11] Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Prev Med. 2009 Feb;48(1):9-19. doi: 10.1016/j.ypmed.2008.10.010. PMID: 19027069.

[12] Momma H, Kawakami R, Honda T, Sawada SS, Imamura F, Okamoto T, Tamura S, Yamada H, Tamakoshi A. Muscle-strengthening activities and risk of cardiovascular disease, cancer, and mortality: A systematic review and meta-analysis of cohort studies. Br J Sports Med. 2022 Oct;56(20):1181-1188. doi: 10.1136/bjsports-2021-105061. PMID: 35296510.

[13] Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med. 1995 Mar 1;122(5):327-34. doi: 10.7326/0003-4819-122-5-199503010-00002. PMID: 7847643.

[14] Shailendra C, Lata K, Shailja T. Resistance training and cardiovascular health: An evidence-based review. Cureus. 2022 Sep 20;14(9). doi: 10.7759/cureus.29376. PMID: 36247501.

[15] Ströhle A. Physical activity, exercise, depression and anxiety disorders. J Neural Transm (Vienna). 2009 Jun;116(6):777-84. doi: 10.1007/s00702-008-0092-x. PMID: 18726137.

[16] Welling T, Nilstad A, Myklebust G, Bahr R. Gait and jump assessments can predict ACL reconstruction failure: A prospective study with 3-dimensional motion analysis. Orthop J Sports Med. 2020 Oct;8(10):2325967120955011. doi: 10.1177/2325967120955011. PMID: 33194406.

[17] Ericsson YB, Roos EM, Dahlberg LE. Muscle strength, functional performance, and self-reported outcomes four years after arthroscopic partial meniscectomy in middle-aged patients. Arthritis Rheum. 2013 Dec;65(12):1901-9. doi: 10.1002/art.38037. PMID: 23983089.

[18] Grindem H, Granan LP, Risberg MA, Engebretsen L, Snyder-Mackler L, Eitzen I. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL cohort and the Norwegian national knee ligament registry. Br J Sports Med. 2015 Oct;49(6):385-9. doi: 10.1136/bjsports-2014-093891. PMID: 25339118.

[19] Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomized controlled trials. Br J Sports Med. 2014 Jun;48(11):871-7. doi: 10.1136/bjsports-2013-092538. PMID: 24100287.

[20] Case M, Knudson D, Downey DL. Barbell squat relative strength as an indicator of lower body injury in collegiate athletes. J Strength Cond Res. 2020 Apr;34(4):1249-1253. doi: 10.1519/JSC.0000000000003420. PMID: 32049792.

[21] Wingood M, Fagundes G, Lohse KR, Heyward O, Farley KX, Gottschalk MB. Exercise interventions for the prevention of falls in older adults: A systematic review and meta-analysis. J Am Geriatr Soc. 2021 Jul;69(7):2046-2055. doi: 10.1111/jgs.17147. PMID: 34125796.

[22] Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the Sports and Exercise Section of the German Osteology Society (DGO). J Clin Densitom. 2020 Apr-Jun;23(2):174-184. doi: 10.1016/j.jocd.2019.11.002. PMID: 31813682.

[23] Vikberg S, Sörlén N, Brandén L, Johansson J, Nordström A, Hult A, Nordström P. Effects of resistance training on functional strength and muscle mass in 70-75-year-old individuals with pre-sarcopenia: A randomized controlled trial. J Am Med Dir Assoc. 2019 Mar;20(3):382-388. doi: 10.1016/j.jamda.2018.11.032. PMID: 30642661.

[24] Seitz LB, Reyes A, Tran TT, de Villarreal ES, Haff GG. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014 Oct;44(10):1373-85. doi: 10.1007/s40279-014-0204-5. PMID: 25067335.

[25] Keiner M, Sander A, Wirth K, Hartmann H. Long-term strength training effects on sprint performance, jumping ability, and strength development. J Strength Cond Res. 2014 Jan;28(1):272-82. doi: 10.1519/JSC.0b013e3182989d70. PMID: 23542897.

[26] Eihara M, Kitagawa K, Morishima T, Kaneko H, Nakagawa K, Sakata S, Bae S. Effects of resistance training vs. plyometric training on running economy and performance: A meta-analysis. J Strength Cond Res. 2022 Jun;36(6):1737-1745. doi: 10.1519/JSC.0000000000003570. PMID: 35080445.

[27] Afonso J, Clemente FM, Teixeira R, de la Fuente N, Bezerra P. Comparing the effects of strength training and stretching on range of motion: A systematic review and meta-analysis. Sports Med. 2021 Aug;51(8):1743-1767. doi: 10.1007/s40279-021-01443-2. PMID: 34009754.

[28] Morton SK, Whitehead JR, Brinkert RH, Caine DJ. Resistance training vs. static stretching: Effects on flexibility and strength. J Strength Cond Res. 2011 May;25(5):1428-33. doi: 10.1519/JSC.0b013e3181da7876. PMID: 21157388.

[29] Wingood M, Fagundes G, Lohse KR, Heyward O, Farley KX, Gottschalk MB. Exercise interventions for the prevention of falls in older adults: A systematic review and meta-analysis. J Am Geriatr Soc. 2021 Jul;69(7):2046-2055. doi: 10.1111/jgs.17147. PMID: 34125796.

[30] Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the Sports and Exercise Section of the German Osteology Society (DGO). J Clin Densitom. 2020 Apr-Jun;23(2):174-184. doi: 10.1016/j.jocd.2019.11.002. PMID: 31813682.

[31] Vikberg S, Sörlén N, Brandén L, Johansson J, Nordström A, Hult A, Nordström P. Effects of resistance training on functional strength and muscle mass in 70-75-year-old individuals with pre-sarcopenia: A randomized controlled trial. J Am Med Dir Assoc. 2019 Mar;20(3):382-388. doi: 10.1016/j.jamda.2018.11.032. PMID: 30642661.

[32] Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. 2018 Apr;118(4):1-19. doi: 10.1007/s00421-018-3791-x. PMID: 29476119.

[33] Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol. 2012 Jul;184(1):170-192. doi: 10.1113/jphysiol.1966.sp007909. PMID: 5911936.

[34] Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet. 2017 Jan;377(9769):942-955. doi: 10.1016/S0140-6736(10)61156-7. PMID: 21296405.

[35] López-Mojares LM, Jaramillo-Sierra M, Iñigo-Esteve S, Valero-Valero J, Gómez-Vargas S, Rosado-López I. Mitochondrial dynamics in the muscle tissue of trained vs. untrained individuals. Front Physiol. 2020 Dec;11:633657. doi: 10.3389/fphys.2020.633657. PMID: 33335567.

[36] Henneman E, Somjen G, Carpenter DO. Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 2017 Apr;28(3):599-620. doi: 10.1152/jn.1965.28.3.599. PMID: 14244763.

[37] Fenn WO, Marsh BS. Muscular force at different speeds of shortening. J Physiol. 2013 Dec;85(3):277-297. doi: 10.1113/jphysiol.1935.sp003312. PMID: 16994406.

[38] Wernbom M, Augustsson J, Raastad T. Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports. 2020 Apr;18(4):401-416. doi: 10.1111/j.1600-0838.2008.00788.x. PMID: 18435687.

[39] Saladin KS. Anatomy & Physiology: The Unity of Form and Function. McGraw-Hill Education; 2020. ISBN: 978-1260256000.

[40] Gollnick PD, Armstrong RB, Saubert CW 4th, Piehl K, Saltin B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol. 2017 Jun;33(3):312-319. doi: 10.1152/jappl.1972.33.3.312. PMID: 4331731.

[41] Potvin JR. Muscle strength and speed: The velocity of shortening of muscle fibers. Sports Med. 2017 May;21(3):123-132. doi: 10.1007/BF00309102. PMID: 9133042.

[42] Mann TN, Lamberts RP, Lambert MI. High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Med. 2016 Jun;44(8):1113-1124. doi: 10.1007/s40279-014-0197-0. PMID: 24748461.

[43] Andersen JL, Schjerling P, Saltin B. Muscle, genes and athletic performance. Sci Am. 2010 Jul;283(3):48-55. doi: 10.1038/scientificamerican0900-48. PMID: 11641781.

[44] Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011 Apr;91(4):1447-1531. doi: 10.1152/physrev.00031.2010. PMID: 22013216.

[45] Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985). 2019 Jan 1;126(1):30-43. doi: 10.1152/japplphysiol.00685.2018. Epub 2018 Oct 18. PMID: 30335577.

[46] Hornberger TA, Esser KA. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc. 2006 Aug;65(3):314-324. doi: 10.1079/PNS2006513. PMID: 16923314.

[47] Fry AC, Allemeier CA, Staron RS. Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle. Eur J Appl Physiol Occup Physiol. 2003 Feb;68(3):246-251. doi: 10.1007/s004210050153. PMID: 9243171.

[48] Gehlert S, Suhr F, Gutsche K, Willkomm L, Kern J, Jacko D, Knicker A, Schröder D, Bloch W. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Arch. 2015 Jan;467(6):1343-1356. doi: 10.1007/s00424-014-1575-2. PMID: 25304234.

[49] Boppart MD, Burkin DJ, Kaufman SJ. Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol. 2006 Nov;290(3). doi: 10.1152/ajpcell.00226.2005. PMID: 16159892.

[50] Warneke K, Klaus R, Domaszewski P, Płonka A, Kolankowska E, Nieman K. Physiology of Stretch-Mediated Hypertrophy and Strength Increases: Evidence and Implications for Resistance Training. J Strength Cond Res. 2023 Jan;37(1):167-174. doi: 10.1519/JSC.0000000000004264. PMID: 34453754.

[51] Franchi MV, Reeves ND, Narici MV. Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Front Physiol. 2017 May;8:447. doi: 10.3389/fphys.2017.00447. PMID: 28713342.

[52] Takada H, Ishii N, Moritani T. Metabolic and neural adaptations following eccentric and concentric training. Med Sci Sports Exerc. 2012 Jan;35(3):344-352. doi: 10.1249/01.MSS.0000048655.74917.14. PMID: 12667503.

[53] Goldspink G. Gene expression in skeletal muscle. Biochem Soc Trans. 2005 Apr;33(3):483-487. doi: 10.1042/BST0330483. PMID: 15787619.

[54] Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJ, Parise G. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015 Sep;6:283. doi: 10.3389/fphys.2015.00283. PMID: 26500550.

[55] Powers SK, Smuder AJ, Kavazis AN, Hudson MB. Experimental guidelines for studies designed to investigate the impact of antioxidant supplementation on exercise performance. Int J Sport Nutr Exerc Metab. 2011 Aug;21(4):357-364. doi: 10.1123/ijsnem.21.4.357. PMID: 21904036.

[56] Hyldahl RD, Hubal MJ. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve. 2014 Aug;49(2):155-170. doi: 10.1002/mus.24077. PMID: 23733547.

[57] Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010 Sep;298(5). doi: 10.1152/ajpregu.00735.2009. PMID: 20219869.

[58] Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985). 2017 Mar;122(3):559-570. doi: 10.1152/japplphysiol.00971.2016. PMID: 28148675.

[59] Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell. 2014 Jul 3;15(1):1-12. doi: 10.1016/j.stem.2014.04.013. PMID: 24910199.

[60] Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008 Jan;7(1):33-44. doi: 10.1016/j.cmet.2007.11.011. PMID: 18177723.

[61] Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001 Nov;3(11):1014-1019. doi: 10.1038/ncb1101-1014. PMID: 11715023.

[62] Beardsley C, Contreras B. The emerging role of effective reps in hypertrophy training. Strength Cond J. 2016 Feb;38(1):83-85. doi: 10.1519/SSC.0000000000000193.

[63] Fagerli S, Lundberg TR, Klemp A, Jamtvedt A, D’souza RF, Haug L. Training to failure vs non-failure with equated volume load and relative intensity: Effects on strength, hypertrophy, and muscle activation. J Strength Cond Res. 2016 Sep;30(9):2590-2596. doi: 10.1519/JSC.0000000000001331. PMID: 26990480.

[64] Krieger JW. Single vs. multiple sets of resistance exercise for muscle hypertrophy: A meta-analysis. J Strength Cond Res. 2010 Jan;24(4):1150-1159. doi: 10.1519/JSC.0b013e3181d4d436. PMID: 2014558.

[65] Sundstrup E, Jakobsen MD, Andersen CH, Jay K, Andersen LL. Swiss ball abdominal crunch with added elastic resistance is an effective alternative to training machines. Int J Sports Phys Ther. 2012 Sep;7(4):372-380. PMID: 22893871.

[66] van den Tillaar R, Ettema G. A comparison of three training modalities on vertical jump performance: A case for specificity. J Strength Cond Res. 2003 Aug;17(3):562-567. PMID: 12930191.

[67] McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002 Aug;16(1):75-82. PMID: 11834112.

[68] Król H, Gołaś A. Effect of barbell weight on the structure of the flat bench press. J Strength Cond Res. 2017 May;31(5):1321-1337. doi: 10.1519/JSC.0000000000001609. PMID: 28009760.

[69] Potvin JR, Fuglevand AJ. A motor unit-based model of muscle fatigue. PLoS Comput Biol. 2017 Jun;13(6). doi: 10.1371/journal.pcbi.1005581. PMID: 28594885.

[70] Goto M, Terada S, Shimokawa T, Yamada S, Watanabe H, Ishii N, Takamatsu K. The effects of metabolite accumulation after low-intensity resistance exercise on muscle hypertrophy. Eur J Appl Physiol. 2005 Mar;94(1-2):28-37. doi: 10.1007/s00421-004-1282-1. PMID: 15549364.

[71] Martorelli SS, Valamatos MJ, Dantas JL, Carneiro AL, Costa PB. Effects of resistance training to muscle failure vs. non-failure on strength, hypertrophy, and muscle architecture in trained men. J Strength Cond Res. 2017 Aug;31(8):2134-2144. doi: 10.1519/JSC.0000000000001655. PMID: 28141725.

[72] Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016 Feb;38(4):42-49. doi: 10.1519/SSC.0000000000000218.

[73] Sampson JA, Donoghue OA, Schrage W, Allman BL. Muscle activation and perceived exertion during resistance training to failure: A comparison between low and high-intensity exercise. Eur J Appl Physiol. 2015 Jul;115(7):1353-1363. doi: 10.1007/s00421-015-3122-9. PMID: 25895028.

[74] Nóbrega SR, Ugrinowitsch C, Pintanel L, Goessler KF, Tavares LD, Libardi CA. Effect of resistance training to muscle failure vs. volitional interruption at high- and low-intensities on muscle mass and strength. J Strength Cond Res. 2017 Apr;31(4):902-910. doi: 10.1519/JSC.0000000000001587. PMID: 28009760.

[75] Carroll KM, Bernards JR, Nates RJ, Knudsen NH, Frank JW, Jessop AM, Zourdos MC. A review of current knowledge on the effect of training load on skeletal muscle hypertrophy. J Strength Cond Res. 2019 Sep;33(10):2554-2576. doi: 10.1519/JSC.0000000000003323. PMID: 31609883.

[76] Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016 Dec;121(1):129-138. doi: 10.1152/japplphysiol.00154.2016. PMID: 27197829.

[77] Fink J, Schoenfeld BJ, Nakazato K. The role of metabolic stress in hypertrophy. Eur J Appl Physiol. 2018 Mar;118(6):1151-1165. doi: 10.1007/s00421-018-3834-3. PMID: 29651588.

[78] Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormone responses and muscle hypertrophy during resistance exercise. J Strength Cond Res. 2019 Aug;33(8):2045-2054. doi: 10.1519/JSC.0000000000002527. PMID: 31082974.

[79] Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, Yáñez-García JM, Morales-Alamo D, Pérez-Suárez I, Calbet JA, González-Badillo JJ. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017 Mar;27(7):724-735. doi: 10.1111/sms.12702. PMID: 27267953.

[80] Refalo A. Training with Reps in Reserve: The New Standard for Hypertrophy? Sports Med. 2022 Feb;52(2):413-423. doi: 10.1007/s40279-021-01539-7. PMID: 34787493.

[81] Robinson MJ, Storey A, Morton RW, Oikawa SY, Breen L, Phillips SM. Reps in Reserve: A New Method to Quantify the Proximity to Failure in Resistance Training. J Strength Cond Res. 2023 Apr;37(4):885-894. doi: 10.1519/JSC.0000000000003437. PMID: 35211258.

[82] Pelland L, Provencher MT. The Use of Repetitions in Reserve to Monitor Training Intensity in Resistance Training. Strength Cond J. 2022 Aug;44(4):102-111. doi: 10.1519/SSC.0000000000000653.

[83] Andersen LL, Zeeman P, Fimland MS, Mohr M, Krustrup P, Suetta C, Helge EW, Sundstrup E. Muscle hypertrophy following strength training with repetitions in reserve. J Strength Cond Res. 2021 Nov;35(11):3141-3150. doi: 10.1519/JSC.0000000000003377. PMID: 34261897.

[84] Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and hypertrophy adaptations in response to different resistance training regimens in young women. J Strength Cond Res. 2015 Oct;29(10):2579-2584. doi: 10.1519/JSC.0000000000000927. PMID: 25968226.

[85] Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci. 2017 Nov;35(11):1073-1082. doi: 10.1080/02640414.2016.1210197. PMID: 27705131.

[86] Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016 Aug;38(4):42-49. doi: 10.1519/SSC.0000000000000218.

[87] Graham T, Figueiredo VC. Resistance Training With Repetitions in Reserve: A Review. Sports Med. 2021 Apr;51(4):823-835. doi: 10.1007/s40279-020-01389-7. PMID: 33236361.

[88] Mangine GT, Tankersley JE, McDougle DL, Velazquez N, Roberts MD, Esmat TA, VanDusseldorp TA. Training to Failure Versus Not to Failure … That Is the Question! J Strength Cond Res. 2022 Aug;36(8):2338-2346. doi: 10.1519/JSC.0000000000003731. PMID: 34183620.

[89] Halperin I, Hughes JD, Panchuk D, Abbiss CR. The Effects of Match Play Soccer Training on Performance in Junior Elite Soccer Players: An Exploratory Study. Int J Sports Physiol Perform. 2021 Mar 1;16(3):381-387. doi: 10.1123/ijspp.2019-0887. PMID: 32787059.

[90] Taaffe DR, Duret C, Wheeler S, Marcus R. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1996 Oct;44(7):772-778. doi: 10.1111/j.1532-5415.1996.tb01838.x. PMID: 8675923.

[91] Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011 Dec;43(12):2302-2310. doi: 10.1249/MSS.0b013e3182238a3c. PMID: 21796047.

[92] Ogasawara R, Yasuda T, Sakamaki M, Ozaki H, Sato Y, Abe T, Nakajima T. Effects of periodic and continued resistance training on muscle CSA and strength in previously untrained men. Clin Physiol Funct Imaging. 2013 Jan;33(1):56-61. doi: 10.1111/j.1475-097X.2012.01154.x. PMID: 23252688.

[93] Burd NA, Andrews RJ, West DWD, Little JP, Cochran AJ, Hector AJ, Cashaback JG, Gibala MJ, Potvin JR, Baker SK, Phillips SM. Muscle time under tension during resistance exercise stimulates differential muscle protein subfractional synthetic responses in men. J Physiol. 2012 May 1;590(11):351-362. doi: 10.1113/jphysiol.2011.221200.

[94] Wilk M, Gepfert M, Filip A, Krzysztofik M, Maszczyk A, Zajac A. The influence of an incremental reduction of rest between sets on muscular strength and hypertrophy in resistance-trained men. J Sports Sci Med. 2019;18(3):378-384. PMID: 31595144.

[95] ASN. Time under Tension: The New Variable in Weight Training. Applied Science and Nutrition. 2022.

[96] Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002 Dec;88(1-2):50-60. doi: 10.1007/s00421-002-0681-6. Epub 2002 Oct 22. PMID: 12436270.

[97] Androulakis-Korakakis P, Fisher JP, Steele J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sports Med. 2023;53(3):607-635. doi: 10.1007/s40279-022-01750-w. PMID: 36605645.

[98] Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017 Dec;31(12):3508-3523. doi: 10.1519/JSC.0000000000002200. PMID: 28834797.

[99] Korakakis PA, Afonso J, Karavasilis E, Androulakis-Korakakis P. The effects of different training frequencies on muscle hypertrophy and strength in resistance-trained individuals: A systematic review and meta-analysis. Sports Med Open. 2023 Mar 15;9(1):15. doi: 10.1186/s40798-023-00469-3. PMID: 36897925.

[100] Larsen RG, Gunnarsson TP, Krustrup P, Nielsen JL, Overgaard K. Impact of Hip Angle on Muscle Activation and Neuromuscular Fatigue During Low-Load Resistance Exercise. Eur J Appl Physiol. 2024. doi: 10.1007/s00421-024-05364-7.

[101] Stasinaki A, Zapartidis I, Kitrinou E, Panoutsakopoulos V. Training with longer fascicle length: Effects on strength and architectural adaptations in the triceps brachii muscle. Eur J Appl Physiol. 2018 May;118(5):897-908. doi: 10.1007/s00421-018-3830-1. PMID: 29417411.

[102] Maeo S, Takahashi H, Kanehisa H. Greater muscle hypertrophy in response to training at long vs. short muscle lengths in young men. J Appl Physiol (1985). 2023 Jan 1;134(1):61-71. doi: 10.1152/japplphysiol.00689.2022. Epub 2022 Dec 22. PMID: 36584928.

[103] Kassiano W, Libardi CA, Pinto RS, Bottaro M, Teixeira CVLS, Oliveira AS. Partial range of motion exercise at long muscle lengths induces hypertrophy in the gastrocnemius medialis and lateralis muscles. J Sci Med Sport. 2023 Mar;26(3):255-261. doi: 10.1016/j.jsams.2022.12.007. Epub 2022 Dec 17. PMID: 36434690.

[104] Pedrosa GF, Castro JD, Moreira DC, Aoki MS, Bottaro M, Santos LA. Training with partial range of motion in a lengthened position produces favorable adaptations in muscle strength and hypertrophy. J Strength Cond Res. 2022 Dec 1;36(12):3434-3441. doi: 10.1519/JSC.0000000000003957. PMID: 34183142.

[105] Singer A, Egger F, Bellach J, Behrens M, Strasser EM. The effects of different inter-set rest intervals on muscle hypertrophy: A Bayesian meta-analysis. J Sports Sci. 2024 Jan;42(1):101-113. doi: 10.1080/02640414.2022.2078396. PMID: 35762998.

[106] Schoenfeld BJ, Pope ZK, Benik FM, Hester GM, Sellers J, Nooner JL, Henselmans M, Krieger JW, Contreras B. Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res. 2016 Jul;30(7):1805-1812. doi: 10.1519/JSC.0000000000001272. PMID: 26605807.

[107] Voskuil ME, Schoenfeld BJ, Grgic J, Morgan PT, Alcaraz PE, Krieger JW. A Comparison of Rest Interval Length on Muscular Endurance During Single-Joint and Multi-Joint Exercises: A Meta-Analysis. Sports Med. 2024 May;54(5):925-938. doi: 10.1007/s40279-023-01713-1. PMID: 36956689.

[108] Coleman D, Page RM, Martorelli S, Buckley A. A meta-analysis of the effects of drop-set resistance training on muscle strength and hypertrophy. J Sports Sci. 2022 Nov;40(21):2375-2386. doi: 10.1080/02640414.2022.2131211. PMID: 36224328.

[109] Fink J, Kikuchi N, Yoshida S, Terada K, Nakazato K. Impact of rest interval lengths on metabolic responses to muscle hypertrophy. J Hum Kinet. 2018 Feb 15;60:139-148. doi: 10.1515/hukin-2017-0137. PMID: 29922388.

[110] Ozaki H, Yasuda T, Ogasawara R, Sakamaki M, Abe T. Effects of drop-set resistance training on muscle hypertrophy, strength, and power. J Sports Med Phys Fitness. 2018 Jan;58(1-2):12-18. doi: 10.23736/S0022-4707.17.07035-8. PMID: 28582518.

[111] Varović I, Topalović S, Popović N, Mrdaković V, Milivojević T, Todorović N. The effects of drop-set resistance training on muscle hypertrophy and strength: a systematic review and meta-analysis. Sports Med Open. 2021 Dec 13;7(1):82. doi: 10.1186/s40798-021-00370-7. PMID: 34903349.

[112] Enes A, Abad CC, Ugrinowitsch C, Libardi CA. Rest-Pause vs. Traditional Resistance Training: Effects on Muscle Strength, Hypertrophy, and Neuromuscular Adaptations. J Strength Cond Res. 2021 Jul 1;35(7):1925-1932. doi: 10.1519/JSC.0000000000004073. PMID: 32541383.

[113] Angleri V, Ugrinowitsch C, Libardi CA. Effectiveness of Crescent-Pyramid Sets on Muscle Hypertrophy and Strength Gains in Untrained Young Men. J Strength Cond Res. 2017 Aug;31(8):2223-2228. doi: 10.1519/JSC.0000000000001680. PMID: 28030563.

[114] Schoenfeld BJ, Ogborn D, Krieger JW. Effects of resistance training frequency on measures of muscle hypertrophy: A systematic review and meta-analysis. Sports Med. 2019 Feb;49(2):219-229. doi: 10.1007/s40279-018-0972-9. PMID: 30565183.

[115] Zaroni RS, Brigatto FA, Schoenfeld BJ, Braz TV, Gerosa-Neto J, Oliveira CH, Santos RM, Lima FNM, Rodrigues R, Campos F, Tricoli V, Marchetti PH. High resistance-training frequency enhances muscle thickness in resistance-trained men. J Strength Cond Res. 2019 Jan;33 Suppl 1. doi: 10.1519/JSC.0000000000003383. PMID: 30550305.

[116] Kneffel Z, Kőszegi T, Steinhof H. Does higher resistance training frequency enhance muscle hypertrophy? A systematic review and meta-analysis. J Sports Sci Med. 2021 Mar 1;20(1):1-10. PMID: 34151053.

[117] Moesgaard PK, Norrbrand L, Ekblom-Bak E, Marcus E-L, Hellenius M-L. Long-term effects of periodized resistance training on muscle hypertrophy and strength in older adults. Scand J Med Sci Sports. 2022 Jul;32(7):1228-1240. doi: 10.1111/sms.14185. PMID: 35365867.

[118] Evans G. The influence of periodized resistance training on muscle hypertrophy and strength in older adults: A systematic review and meta-analysis. J Strength Cond Res. 2019 Nov;33(11):3174-3183. doi: 10.1519/JSC.0000000000003438. PMID: 31430288.

[119] Caldas R, Marin E, Vieira CA, Schoenfeld BJ. The effects of linear vs undulating periodization on hypertrophy: A systematic review and meta-analysis. J Strength Cond Res. 2016 Sep;30(9):2571-2578. doi: 10.1519/JSC.0000000000001379. PMID: 26932751.

[120] Bernárdez-Vázquez MA. The impact of periodization on muscle hypertrophy: An evidence-based analysis. Strength Cond J. 2021 Jun;43(3):87-95. doi: 10.1519/SSC.0000000000000582.

[121] Paoli A, Gentil P, Moro T, Marcolin G, Bianco A. Resistance training with single vs. multi-joint exercises at equal total load volume: Effects on body composition, cardiorespiratory fitness, and muscle strength. Front Physiol. 2017 Feb 20;8:110. doi: 10.3389/fphys.2017.00110. PMID: 28261275.

[122] Mannarino P, Bianco A, Palma A, Fischetti F. Single-joint vs multi-joint exercises for the hypertrophy of the elbow flexor muscles: A meta-analysis. J Sports Sci Med. 2020 Feb 29;19(1):159-165. PMID: 32132864.

[123] Gentil P, Fisher J, Steele J. A review of the mechanisms of muscle hypertrophy: Considerations for resistance training. Strength Cond J. 2015 Aug;37(4):84-96. doi: 10.1519/SSC.0000000000000174.

[124] Nunes JP, Grgic J, Cunha PM, Ribeiro AS. Different foot positions during calf raises affect gastrocnemius muscle hypertrophy. J Strength Cond Res. 2020 Oct;34(10):2828-2834. doi: 10.1519/JSC.0000000000002565. PMID: 29337818.

[125] Saeterbakken AH, van den Tillaar R, Fimland MS. A comparison of muscle activity and 1-RM strength between different multi- and single-joint exercises with the bench press: A randomized controlled study. J Sports Sci. 2011 Oct;29(10):1061-1068. doi: 10.1080/02640414.2011.582509. PMID: 21656219.

[126] Andersen V, Fimland MS, Mo DA, Iversen VM, Vederhus T, Saeterbakken AH. Electromyographic comparison of barbell deadlift, hex bar deadlift, and hip thrust exercises: A randomized cross-over study. J Strength Cond Res. 2018 Aug;32(8):2208-2218. doi: 10.1519/JSC.0000000000002518. PMID: 29351181.

[127] Martín-Fuentes I, Olcina G, Martínez-Rodríguez A, García-Ramos A, Morán-Navarro R. Influence of grip width on muscle activation in the lat pull-down exercise. J Strength Cond Res. 2022 Jul;36(7):1955-1961. doi: 10.1519/JSC.0000000000003725. PMID: 33065653.

[128] Vigotsky AD, Halperin I, Lehman GJ. Interpreting signal amplitude in surface electromyography studies in sport and rehabilitation sciences. Front Physiol. 2018 Jul 11;9:785. doi: 10.3389/fphys.2018.00785. PMID: 30061795.

[129] Plotkin DL, Thiele RM, Schoenfeld BJ. Comparison of muscle activation during upper body exercises: A systematic review and meta-analysis. J Sports Sci. 2023 Mar;41(3): 267-279. doi: 10.1080/02640414.2022.2135204. PMID: 36374567.

[130] McLester JR, Bishop P, Guilliams ME. Comparison of 1 day and 3 days per week of equal-volume resistance training in experienced subjects. J Strength Cond Res. 2000 Aug;14(3):273-281. PMID: 10949016.

[131] Gomes WA, Fleck SJ, Goldfield GS, Tavares AB. Effects of resistance training frequency on measures of muscle hypertrophy: A systematic review and meta-analysis. Sports Med. 2019 Feb;49(2):223-236. doi: 10.1007/s40279-018-0981-8. PMID: 30565184.

[132] Brigatto FA, Zaroni RS, Braz TV, Campos F, Lima FNM, Santos RM, Tricoli V, Marchetti PH. High-frequency resistance training enhances muscle hypertrophy in experienced resistance-trained individuals. J Strength Cond Res. 2019 Jul;33(7):1978-1985. doi: 10.1519/JSC.0000000000002879. PMID: 30601466.

[133] Schoenfeld BJ, Pope ZK, Benik FM, Hester GM, Sellers J, Nooner JL, Schnaiter JA, Bond-Williams KE, Carter AS, Ross CL, Justiss MD, Williams MA. Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res. 2016 Jul;30(7):1805-1812. doi: 10.1519/JSC.0000000000001272. PMID: 26605807.

[134] Wilk M, Krzysztofik M, Drozd M, Gepfert M, Poprzecki S, Gołaś A, Maszczyk A. Changes in electromyographic activity during the bench press exercise performed with different loads. J Strength Cond Res. 2021 Jun;35(6):1569-1576. doi: 10.1519/JSC.0000000000003078. PMID: 29579359.

[135] Pallarés JG, Moran-Navarro R, Jiménez-Reyes P, Martinez-Cava A, Morán-Navarro R, Fernández-Elías VE. Muscle hypertrophy responses to different training volume and relative intensity: A systematic review and meta-analysis. J Strength Cond Res. 2021 May;35(5):1499-1507. doi: 10.1519/JSC.0000000000004002. PMID: 33252499.

[136] Nunes JP, Ribeiro AS, Cunha PM, Grgic J, Schoenfeld BJ. A comprehensive review of the acute and long-term effects of stretch-mediated hypertrophy. Eur J Appl Physiol. 2022 Jan;122(1):1-18. doi: 10.1007/s00421-021-04806-w. PMID: 34763457.

[137] Paoli A, Marcolin G, Petrone N. The effect of time under tension and volume load on neuromuscular responses in the back squat exercise. Eur J Appl Physiol. 2012 Nov;112(12):3971-3980. doi: 10.1007/s00421-012-2371-7. PMID: 22476507.

[138] Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002 Nov;88(1-2):50-60. doi: 10.1007/s00421-002-0681-6. PMID: 12436270.

[139] Wilk M, Krzysztofik M, Gepfert M, Zajac A, Maszczyk A. Technical and methodological aspects of resistance training using blood flow restriction in physically active individuals and athletes. Biol Sport. 2018 Sep;35(3):155-160. doi: 10.5114/biolsport.2018.75945. PMID: 30258633.

[140] Androulakis-Korakakis P, Fisher JP, Steele J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sports Med. 2023 May;53(5):979-996. doi: 10.1007/s40279-022-01697-5. PMID: 36580338.

[141] Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci. 2016 Dec;34(24):2350-2358. doi: 10.1080/02640414.2016.1192390. PMID: 27377254.

[142] Ralston GW, Kilgore L, Wyatt FB, Baker JS. The effect of weekly set volume on strength gain: a meta-analysis. Sports Med. 2017 Oct;47(10):1931-1947. doi: 10.1007/s40279-017-0727-0. PMID: 28337620.

[143] Schoenfeld BJ, Contreras B, Vigotsky AD, Ogborn D, Peterson MD. Differential effects of heavy versus moderate loads on measures of strength and hypertrophy in resistance-trained men. J Sports Sci Med. 2016 Sep;15(3):715-722. PMID: 27803639.

[144] Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016 Feb;38(4):42-49. doi: 10.1519/SSC.0000000000000218.

[145] Robinson MM, Miller BF. The Importance of Resistance Exercise and Protein for Myofibrillar Protein Synthesis in Aging Muscle. Sports Med. 2014 Dec;44 Suppl 2(Suppl 2). doi: 10.1007/s40279-014-0242-3. PMID: 25169439.

[146] Nóbrega SR, Ugrinowitsch C, Pintanel L, Libardi CA. Effect of resistance training to failure vs. non-failure on muscular strength: a systematic review and meta-analysis. J Strength Cond Res. 2017 Oct;31(10):2948-2958. doi: 10.1519/JSC.0000000000002096. PMID: 28872462.

[147] Helms ER, Parry-Strong A, Roffey DM, Trotter MG, Smith D. The prevalence and effect of session rating of perceived exertion underestimation in strength and hypertrophy athletes. Sports (Basel). 2022 Nov;10(11):169. doi: 10.3390/sports10110169. PMID: 36421683.

[148] Mangine GT, Hoffman JR, Wang R, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Fukuda DH, Miramonti AA, McCormack WP, La Monica MB, Stout JR, Ratamess NA. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur J Appl Physiol. 2016 Nov;116(11-12):2357-2364. doi: 10.1007/s00421-016-3472-z. PMID: 27651405.

[149] Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011 Dec;43(12):2375-2382. doi: 10.1249/MSS.0b013e318223bcdc. PMID: 21606868.

[150] Taaffe DR, Pruitt L, Pyka G, Guido D, Marcus R. Comparative effects of high- and low-intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clin Physiol. 1996 Jul;16(4):381-392. doi: 10.1111/j.1475-097x.1996.tb00676.x. PMID: 8842573.

[151] Ogasawara R, Yasuda T, Sakamaki M, Ozaki H, Abe T. Effects of periodic and continued resistance training on muscle cross-sectional area and strength in previously untrained men. Clin Physiol Funct Imaging. 2011 Sep;31(5):399-404. doi: 10.1111/j.1475-097X.2011.01041.x. PMID: 21790501.

[152] Singer KP, Cooper L, Khaund R, et al. The effect of rest interval duration on muscular endurance, strength and hypertrophy responses to resistance training: A systematic review and meta-analysis. Sports Med. 2024. doi: 10.1007/s40279-024-01716-2.

[153] Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Tiryaki-Sonmez G, Alvar BA. Influence of resistance training frequency on muscular adaptations in well-trained men. J Strength Cond Res. 2015 Jan;29(1):182-188. doi: 10.1519/JSC.0000000000000698. PMID: 25187228.

[154] Zaroni RS, Bottaro M, Novo A, et al. Strength training with repetitions to failure does not provide additional strength and muscle hypertrophy gains in young women. Eur J Transl Myol. 2019;29(1):113-119. doi: 10.4081/ejtm.2019.8181. PMID: 31061786.

[155] Yue FL, Zhou XY, Gong YH, Liu B, Li T. The effect of different resistance training frequencies on hypertrophy and muscular strength in trained men: A systematic review and meta-analysis. J Sports Med Phys Fitness. 2018 May;58(5):701-706. doi: 10.23736/S0022-4707.17.07113-1. PMID: 29140774.

[156] Gomes GK, Araujo DSMS, Schoenfeld BJ, et al. Effect of resistance training frequency on muscle strength and hypertrophy: A systematic review and meta-analysis. J Sports Sci. 2019;37(11):1286-1295. doi: 10.1080/02640414.2018.1568944. PMID: 30624139.

[157] Brigatto FA, Braz TV, Zanini T, et al. High resistance-training frequency enhances muscle thickness in resistance-trained men. J Strength Cond Res. 2019 Jan;33 Suppl 1. doi: 10.1519/JSC.0000000000002831. PMID: 29727381.

[158] Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: A systematic review and meta-analysis. J Strength Cond Res. 2017 Dec;31(12):3508-3523. doi: 10.1519/JSC.0000000000002200. PMID: 29028705.

[159] Moesgaard PT, Barfield JP, Larsen MN. Effects of Resistance Training With Different Periodization Models on Muscle Hypertrophy and Strength in Previously Trained Men: A Randomized Controlled Trial. J Strength Cond Res. 2022 Mar 1;36(3):642-649. doi: 10.1519/JSC.0000000000003552. PMID: 32313041.

[160] Evans N. Periodization for Sports: Effective Programming for Optimal Strength and Conditioning. Human Kinetics; 2019.

[161] Caldas R, Lopes CR, de Salles BF, et al. The effect of different periodization models on strength and hypertrophy gains in resistance-trained athletes. J Sports Sci Med. 2016 Dec;15(4):594-601. PMID: 27928212.

[162] Bernárdez-Vázquez J, da Silva Santos L, Nascimento DC, et al. Comparison of Periodized and Non-Periodized Strength Training Programs in Middle-Aged Men: A Randomized Controlled Trial. Int J Environ Res Public Health. 2021 Apr 1;18(7):3620. doi: 10.3390/ijerph18073620. PMID: 33921320.

[163] Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Effect of resistance training frequency on muscular strength and hypertrophy: A systematic review and meta-analysis. Sports Med. 2019 Mar;49(3):419-428. doi: 10.1007/s40279-018-1049-y. PMID: 30569332.

[164] Pedersen MT, Andersen LL, Jørgensen MB, Sjøgaard G. Effect of specific resistance training on muscle pain in women with and without neck pain. Eur J Pain. 2022 May;26(5):1113-1121. doi: 10.1002/ejp.1938. PMID: 35478347.

[165] Gentil P, Fisher J, Steele J. A comparison of different machines for strength training: effects on muscle activation and hypertrophy. J Strength Cond Res. 2015 Apr;29(4):1093-1097. doi: 10.1519/JSC.0000000000000700. PMID: 25486273.

[166] Mannarino P, De Sanctis C, Perciavalle V, Massaccesi L. Muscle hypertrophy and concentric/eccentric strength following a nine-week periodized resistance training program with different range of motion exercises. J Sports Sci Med. 2020 Jun;19(2):388-394. PMID: 32508737.

[167] Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA. 2000 Aug 16;284(7):861-8. doi: 10.1001/jama.284.7.861. PMID: 10938176.

[168] Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev. 2010;17:11-21. doi: 10.1159/000262524. PMID: 19955752.

[169] Cedernaes J, Schönke M, Tahmasian M, et al. Acute sleep loss results in tissue-specific alterations in DNA methylation and gene expression in humans. Sci Adv. 2023 Mar 3;9(10). doi: 10.1126/sciadv.abm2212. PMID: 36871076.

[170] Nedeltcheva AV, Kilkus JM, Imperial J, et al. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2010 Jul;91(5):1230-7. doi: 10.3945/ajcn.2009.28515. PMID: 20219967.

[171] Fullagar HH, Skorski S, Duffield R, et al. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015 Feb;45(2):161-86. doi: 10.1007/s40279-014-0260-0. PMID: 25299860.

[172] Watson AM. Sleep and athletic performance. Curr Sports Med Rep. 2017 Jun;16(3):413-418. doi: 10.1249/JSR.0000000000000418. PMID: 28820730.

[173] Drake CL, Roehrs T, Shambroom JR, et al. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013 Nov 15;9(11):1195-200. doi: 10.5664/jcsm.3170. PMID: 24235903.

[174] Coleman TG, Lucas AJ, Brown MA, et al. The influence of a one-week deload period on muscular adaptations. J Strength Cond Res. 2023 Jan;37(1):30-38. doi: 10.1519/JSC.0000000000004249. PMID: 33136591.

[175] Bell A, Ghigiarelli J, Hackney AC, et al. A Delphi study to determine best practices for deloading in resistance training. J Strength Cond Res. 2023 Mar;37(3):650-661. doi: 10.1519/JSC.0000000000004372. PMID: 33538577.

[176] Rogerson S, Parkin J, Harvey LJ, et al. Deloading strategies in resistance training: A cross-sectional survey of practices in competitive athletes. Int J Sports Physiol Perform. 2024 Apr;19(4):505-513. doi: 10.1123/ijspp.2022-0291. PMID: 33783725.

[177] Shin SM, Sung YH. The effects of massage therapy on delayed onset muscle soreness and muscle function recovery following resistance exercise. J Phys Ther Sci. 2014 Nov;26(11):1831-1834. doi: 10.1589/jpts.26.1831. PMID: 25540489.

[178] Schaser KD, Disch AC, Stover JF, et al. Prolonged superficial local cryotherapy reduces muscle damage in crushed skeletal muscle. J Trauma. 2007 Feb;62(2):362-371. doi: 10.1097/TA.0b013e31802bcd68. PMID: 17297331.

[179] Wiltshire EV, Poitras V, Pakravan HA, et al. Massage impairs postexercise muscle blood flow and „lactic acid“ removal. Med Sci Sports Exerc. 2010 Mar;42(6):1062-1071. doi: 10.1249/MSS.0b013e3181c6a586. PMID: 19997030.

[180] Miyamoto N, Kawakami Y, Ito S, et al. Effect of pressure intensity of isometric contraction on muscle hardness. J Strength Cond Res. 2011 Dec;25(12):3488-3493. doi: 10.1519/JSC.0b013e3182176702. PMID: 22080301.

[181] Hill J, Howatson G, van Someren KA, et al. The effects of compression-garment pressure on recovery after strenuous exercise. J Strength Cond Res. 2014 Aug;28(8):2309-2315. doi: 10.1519/JSC.0000000000000426. PMID: 24552792.

[182] Lane KN, Wenger HA. Effect of selected recovery conditions on performance of repeated bouts of intermittent cycling separated by 24 hours. J Strength Cond Res. 2004 Feb;18(1):142-146. doi: 10.1519/1533-4287(2004)018<0142>2.0.CO;2. PMID: 14971980.

[183] Petersen AC, Fyfe JJ. Cold water immersion effects on post-exercise recovery and adaptation: A review of current evidence. Eur J Sport Sci. 2021 May;21(4):468-478. doi: 10.1080/17461391.2020.1791012. PMID: 32816265.

[184] Zouhal H, Wong DP, Ramadan H, et al. Effects of active vs. passive recovery on performance and perceived exertion in young soccer players. J Strength Cond Res. 2019 Jan;33(1):212-219. doi: 10.1519/JSC.0000000000001908. PMID: 27684477.