Nach einem intensiven Workout ist Muskelkater ein häufiges Problem. Viele Methoden wie Eisbäder, Foam Rolling oder Supplements sollen die Regeneration beschleunigen. Doch welche Ansätze sind wirklich wirksam?
Was ist Muskelkater?
Muskelkater, auch bekannt als Delayed Onset Muscle Soreness (DOMS), tritt durch Mikroverletzungen in den Muskelfasern auf, besonders bei exzentrischen Bewegungen. Diese Verletzungen führen zu Entzündungsreaktionen und Schwellungen, die Schmerzen verursachen. Muskelkater erreicht seinen Höhepunkt 48 bis 72 Stunden nach der Belastung und verschwindet meist nach einer Woche.
Mythen und Fakten: Was hilft bei Muskelkater?
Wärme- und Kältetherapie
Cold-Water-Immersion (CWI), also Eisbäder, gelten als populäre Methode zur Linderung von Muskelkater. Studien zeigen, dass die Abkühlung durch Eisbäder entzündliche Prozesse verlangsamen kann, was Schmerzen lindern könnte. Allerdings wirken sie bei Krafttraining weniger effektiv als bei Ausdauerbelastungen. Wassertemperaturen von 11 bis 15°C für etwa 10 bis 15 Minuten scheinen die besten Ergebnisse zu liefern. Im Gegensatz dazu fördert Wärmetherapie den Heilungsprozess, indem sie die Durchblutung anregt, was besonders in der späteren Regenerationsphase nützlich sein kann.
Kompression
Kompressionskleidung übt Druck auf Muskeln aus und kann Schwellungen reduzieren sowie den Abtransport von Abfallstoffen fördern. Während Kompressionskleidung während des Trainings kaum spürbare Effekte hat, sind die Vorteile nach dem Training deutlich besser belegt. Studien zeigen, dass Kompression nach intensiven Einheiten Muskelkater lindern und die Erholung beschleunigen kann.
Aktive Regeneration
Leichte, aktive Bewegung nach dem Training kann den Blutfluss verbessern und den Abtransport von Abfallprodukten unterstützen, was die Regeneration beschleunigt. Hierbei sollte die Intensität allerdings moderat bleiben, um die Muskeln nicht weiter zu belasten.
Massagen und Akupunktur
Massagen können die Durchblutung steigern und die Muskulatur entspannen, was bei Muskelkater hilfreich ist. Auch Akupunktur wird als Methode zur Linderung von Schmerzen angewendet, allerdings fehlen hier solide wissenschaftliche Beweise.
Back to Basics: Schlaf und Ernährung
Ausreichend Schlaf und eine ausgewogene Ernährung sind essenziell für die Muskelregeneration. Proteine und bestimmte Supplements wie Omega-3-Fettsäuren oder Antioxidantien können den Heilungsprozess unterstützen.
Fazit
Wissenschaftliche Untersuchungen zeigen, dass es keine Wundermethode gegen Muskelkater gibt. Eisbäder und Kompressionskleidung können in bestimmten Fällen helfen, aktive Regeneration und ausreichend Schlaf bleiben jedoch die effektivsten Ansätze zur Linderung von Muskelkater.
Dein DK Sports & Physio Team aus der Karlsruher Oststadt
Den ausführlichen Artikel findest du in unserer DK Academy.
Wir geben Physiotherapeuten, Trainern und allen Wissbegierigen einen sachlichen Einblick in die Physiotherapie und helfen so die Rehabilitation und das Training nach Verletzungen oder Beschwerden effizienter zu gestalten.
Sichere dir vollen Zugriff auf unsere Rehab Live Sessions, exklusive Review- und Blogartikel, Simple Tipps und Infografiken.
Du benötigst Physiotherapie im Raum Karlsruhe? Dann sind wir gerne für dich da und unterstützen dich!
Dein DK Sports & Physio Team aus der Karlsruher Oststadt
Unsere weiteren Blog-Artikel
[1] X. Valle, L. Til, F. Drobnic, et al., „Compression garments to prevent delayed onset muscle soreness in soccer players,“ Muscles, Ligaments and Tendons Journal, vol. 3, pp. 295-302, 2013.
[2] H. Hoppeler, Eccentric Exercise: Physiology and Application in Sport and Rehabilitation, Routledge, 2015.
[3] D. Böning, „Muskelkater,“ Dtsch Z Sportmed, vol. 51, no. 2, pp. 63-64, 2000.
[4] J. Kim, J. Lee, „A review of nutritional intervention on delayed onset muscle soreness,“ J Exerc Rehabil, vol. 10, pp. 349-356, 2014.
[5] J. Peake, K. Nosaka, K. Suzuki, „Characterization of inflammatory responses to eccentric exercise in humans,“ Exerc Immunol Rev, vol. 11, pp. 64-85, 2005.
[6] P.B. Lewis, D. Ruby, C.A. Bush-Joseph, „Muscle soreness and delayed-onset muscle soreness,“ Clinics in Sports Medicine, vol. 31, pp. 255-262, 2012.
[7] L.J. Beaton, M.A. Tarnopolsky, S.M. Phillips, „Contraction-induced muscle damage in humans following calcium channel blocker administration,“ The Journal of Physiology, vol. 544, pp. 849-859, 2002.
[8] J. Douglas, S. Pearson, A. Ross, et al., „Eccentric Exercise: Physiological Characteristics and Acute Responses,“ Sports Medicine (Auckland, NZ), vol. 47, pp. 663-675, 2017.
[9] H. Hoppeler, „Moderate Load Eccentric Exercise; A Distinct Novel Training Modality,“ Front Physiol, vol. 7, p. 483, 2016.
[10] M. Linari, L. Lucii, M. Reconditi, et al., „A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres,“ The Journal of Physiology, vol. 526, pp. 589-596, 2000.
[11] K.C. Nishikawa, J.A. Monroy, T.E. Uyeno, et al., „Is titin a ‚winding filament‘? A new twist on muscle contraction,“ Proceedings Biological Sciences, vol. 279, pp. 981-990, 2012.
[12] W. Herzog, „Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions,“ Journal of Applied Physiology (Bethesda, Md: 1985), vol. 116, pp. 1407-1417, 2014.
[13] J. Duchateau, S. Baudry, „Insights into the neural control of eccentric contractions,“ Journal of Applied Physiology (Bethesda, Md: 1985), vol. 116, pp. 1418-1425, 2014.
[14] E. Kellis, V. Baltzopoulos, „Muscle activation differences between eccentric and concentric isokinetic exercise,“ Medicine and Science in Sports and Exercise, vol. 30, pp. 1616-1623, 1998.
[15] N. Hedayatpour, D. Falla, „Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training,“ Biomed Res Int, vol. 2015, p. 193741, 2015.
[16] U. Proske, D.L. Morgan, „Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications,“ The Journal of Physiology, vol. 537, pp. 333-345, 2001.
[17] C. Nicol, J. Avela, P.V. Komi, „The stretch-shortening cycle: a model to study naturally occurring neuromuscular fatigue,“ Sports Medicine (Auckland, NZ), vol. 36, pp. 977-999, 2006.
[18] P.A. Tesch, R. Fernandez-Gonzalo, T.R. Lundberg, „Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo) Resistance Exercise,“ Front Physiol, vol. 8, p. 241, 2017.
[19] G.M. Verrall, J.P. Slavotinek, P.G. Barnes, et al., „Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging,“ Br J Sports Med, vol. 35, pp. 435-439, 2001.
[20] J.W. Orchard, P. Farhart, C. Leopold, „Lumbar spine region pathology and hamstring and calf injuries in athletes: is there a connection?“ Br J Sports Med, vol. 38, pp. 502-504, 2004.
[21] O. Yanagisawa, J. Sakuma, and Y. Kawakami, „Effect of exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time tissue elastography,“ SpringerPlus, vol. 4, p. 308, 2015.
[22] M. Wilke, R. Schleip, und B. Klingler, „Is ‘Delayed Onset Muscle Soreness’ a False Friend? The Potential Implication of the Fascial Connective Tissue in Post-Exercise Discomfort“, Int. J. Mol. Sci., Bd. 22, Nr. 17, S. 9482, 2021, doi: 10.3390/ijms22179482.
[23] C. Rose, K. M. Edwards, J. Siegler, et al., „Whole-body Cryotherapy as a Recovery Technique after Exercise: A Review of the Literature,“ International Journal of Sports Medicine, vol. 38, pp. 1049–1060, 2017.
[24] J. Leeder, C. Gissane, K. van Someren, et al., „Cold water immersion and recovery from strenuous exercise: a meta-analysis,“ British Journal of Sports Medicine, vol. 46, pp. 233–240, 2012.
[25] I. M. Wilcock, J. B. Cronin, W. A. Hing, „Physiological response to water immersion: a method for sport recovery?“ Sports Medicine, vol. 36, pp. 747–765, 2006.
[26] J. M. Stocks, M. J. Patterson, D. E. Hyde, et al., „Effects of immersion water temperature on whole-body fluid distribution in humans,“ Acta Physiologica Scandinavica, vol. 182, pp. 3–10, 2004.
[27] C. J. Proudfoot, E. M. Garry, D. F. Cottrell, et al., „Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain,“ Current Biology, vol. 16, pp. 1591–1605, 2006.
[28] N. Birbaumer, R. F. Schmidt, Biologische Psychologie, 7th ed., Springer Medizin Verlag, 2010.
[29] M. Ihsan, G. Watson, C. R. Abbiss, „What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?“ Sports Medicine, vol. 46, pp. 1095–1109, 2016.
[30] C. Mawhinney, H. Jones, C. H. Joo, et al., „Influence of cold-water immersion on limb and cutaneous blood flow after exercise,“ Medicine & Science in Sports & Exercise, vol. 45, pp. 2277–2285, 2013.
[31] A. F. Machado, P. H. Ferreira, J. K. Micheletti, et al., „Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis,“ Sports Medicine, vol. 46, pp. 503–514, 2016.
[32] E. Hohenauer, J. Taeymans, J. P. Baeyens, et al., „The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis,“ PLoS One, vol. 10, p. e0139028, 2015.
[33] J. M. Peake, L. A. Roberts, V. C. Figueiredo, et al., „The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise,“ Journal of Physiology, vol. 595, pp. 695–711, 2017.
[34] J. T. Costello, P. R. Baker, G. M. Minett, et al., „Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults,“ Cochrane Database of Systematic Reviews, 2015, doi: 10.1002/14651858.CD010789.pub2.
[35] S. Beliard, M. Chauveau, T. Moscatiello, et al., „Compression garments and exercise: no influence of pressure applied,“ Journal of Sports Science & Medicine, vol. 14, pp. 75–83, 2015.
[36] J. Hill, G. Howatson, K. van Someren, et al., „Compression garments and recovery from exercise-induced muscle damage: a meta-analysis,“ British Journal of Sports Medicine, vol. 48, pp. 1340–1346, 2014.
[37] M. I. Trenell, K. B. Rooney, and C. M. Sue, „Compression garments and recovery from eccentric exercise: A P-31-MRS study,“ Journal of Sports Science & Medicine, vol. 5, pp. 106–114, 2006.
[38] A. Bringard, S. Perrey, and N. Belluye, „Aerobic energy cost and sensation responses during submaximal running exercise: positive effects of wearing compression tights,“ International Journal of Sports Medicine, vol. 27, pp. 373–378, 2006.
[39] A. Ali, M. P. Caine, and B. G. Snow, „Graduated compression stockings: Physiological and perceptual responses during and after exercise,“ Journal of Sports Sciences, vol. 25, pp. 413–419, 2007.
[40] W. Kemmler, S. von Stengel, C. Kockritz, et al., „Effect of compression stockings on running performance in men runners,“ Journal of Strength and Conditioning Research, vol. 23, pp. 101–105, 2009.
[41] A. Ali, M. P. Caine, and B. G. Snow, „Graduated compression stockings: physiological and perceptual responses during and after exercise,“ Journal of Sports Sciences, vol. 25, pp. 413–419, 2007.
[42] A. Ali, R. H. Creasy, and J. A. Edge, „Physiological effects of wearing graduated compression stockings during running,“ European Journal of Applied Physiology, vol. 109, pp. 1017–1025, 2010.
[43] A. Ali, R. H. Creasy, and J. A. Edge, „The effect of graduated compression stockings on running performance,“ Journal of Strength and Conditioning Research, vol. 25, pp. 1385–1392, 2011.
[44] W. J. Kraemer, J. A. Bush, R. B. Wickham, et al., „Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise,“ Journal of Orthopaedic & Sports Physical Therapy, vol. 31, pp. 282–290, 2001.
[45] X. Valle, L. Til, F. Drobnic, et al., „Compression garments to prevent delayed onset muscle soreness in soccer players,“ Muscles, Ligaments and Tendons Journal, vol. 3, pp. 295–302, 2013.
[46] R. Heiss, M. Kellermann, B. Swoboda, et al., „Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography,“ Journal of Orthopaedic & Sports Physical Therapy, vol. 48, no. 3, pp. 1-24, 2018.
[47] R. Heiss, M. Kellermann, M. M. May, et al., „Effect of Compression Garments on the Development of Edema and Soreness in Delayed-Onset Muscle Soreness (DOMS),“ Journal of Sports Science and Medicine, vol. 17, pp. 392–401, 2018.
[48] R. B. Donahue, J. L. Vingren, and A. A. Duplanty, „Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness,“ Journal of Strength and Conditioning Research, vol. 30, pp. 2286–2291, 2016.
[49] J. S. Martin, A. R. Borges, and D. T. Beck, „Peripheral conduit and resistance artery function are improved following a single, 1-h bout of peristaltic pulse external pneumatic compression,“ European Journal of Applied Physiology, vol. 115, pp. 2019–2029, 2015.
[50] J. Freiwald, Optimales Dehnen: Sport – Prävention – Rehabilitation, 2nd ed., Spitta, 2013.
[51] K. Cheung, P. Hume, and L. Maxwell, „Delayed onset muscle soreness: treatment strategies and performance factors,“ Sports Medicine, vol. 33, pp. 145–164, 2003.
[52] S. M. Hasson, J. H. Williams, and J. F. Signorile, „Fatigue-induced changes in myoelectric signal characteristics and perceived exertion,“ Canadian Journal of Sport Science, vol. 14, pp. 99–102, 1989.
[53] M. D. Weber, F. J. Servedio, and W. R. Woodall, „The effects of three modalities on delayed-onset muscle soreness,“ Journal of Orthopaedic and Sports Physical Therapy, vol. 20, pp. 236–242, 1994.
[54] Y. Xie, B. Feng, and K. Chen, „The efficacy of dynamic contract-relax stretching on delayed-onset muscle soreness among healthy individuals: A randomized clinical trial,“ Clinical Journal of Sport Medicine, vol. 28, pp. 28–36, 2018.
[55] R. Torres, F. Ribeiro, and J. Alberto Duarte, „Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: systematic review and meta-analysis,“ Physical Therapy in Sport, vol. 13, pp. 101–114, 2012.
[56] T. Hotfiel, B. Swoboda, and S. Krinner, „Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound,“ Journal of Strength and Conditioning Research, vol. 31, pp. 893–900, 2017.
[57] G. Z. Macdonald, D. C. Button, and E. J. Drinkwater, „Foam rolling as a recovery tool after an intense bout of physical activity,“ Medicine and Science in Sports and Exercise, vol. 46, pp. 131–142, 2014.
[58] K. Jay, E. Sundstrup, and S. D. Sondergaard, „Specific and cross-over effects of massage for muscle soreness: randomized controlled trial,“ International Journal of Sports Physical Therapy, vol. 9, pp. 82–91, 2014.
[59] G. E. Pearcey, D. J. Bradbury-Squires, and J. E. Kawamoto, „Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures,“ Journal of Athletic Training, vol. 50, pp. 5–13, 2015.
[60] J. Freiwald, C. Baumgart, and M. Kühnemann, „Foam-Rolling in sport and therapy – Potential benefits and risks Part 2 – Positive and adverse effects on athletic performance,“ Sports Orthopaedics and Traumatology, vol. 32, pp. 267–275, 2016.
[61] J. Freiwald, C. Baumgart, and M. Kühnemann, „Foam-Rolling in sport and therapy – Potential benefits and risks Part 1 – Definitions, anatomy, physiology, and biomechanics,“ Sports Orthopaedics and Traumatology, vol. 32, pp. 258–266, 2016.
[62] V. Gorny and T. Stöggl, „Tissue flossing as a recovery tool for the lower extremity after strength endurance intervals,“ Sportverletzung Sportschaden, vol. 32, pp. 55–60, 2018.
[63] Z. Veqar and S. Imtiyaz, „Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS),“ Journal of Clinical and Diagnostic Research, vol. 8, pp. LE01–LE04, 2014.
[64] N. C. Dabbs, C. D. Black, and J. Garner, „Whole-Body Vibration While Squatting and Delayed-Onset Muscle Soreness in Women,“ Journal of Athletic Training, vol. 50, pp. 1233–1239, 2015.
[65] J. A. Craig, J. Bradley, and D. M. Walsh, „Delayed Onset Muscle Soreness: Lack of Effect of Therapeutic Ultrasound in Humans,“ Archives of Physical Medicine and Rehabilitation, vol. 80, pp. 318–323, 1999.
[66] R. Poppendieck, „Post-exercise Massage Therapy for Short-Term Recovery,“ Journal of Sports Science and Medicine, vol. 11, pp. 1–15, 2012.
[67] R. Torres, F. Ribeiro, and J. A. Duarte, „Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: systematic review and meta-analysis,“ Physical Therapy in Sport, vol. 13, pp. 101–114, 2012.
[68] J. Fleckenstein, D. Niederer, and K. Auerbach, „No Effect of Acupuncture in the Relief of Delayed-Onset Muscle Soreness: Results of a Randomized Controlled Trial,“ Clinical Journal of Sport Medicine, vol. 26, pp. 471–477, 2016.
[69] O. Dupuy, W. Douzi, D. Theurot, L. Bosquet, und B. Dugué, „An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis“, Front. Physiol., Bd. 9, S. 403, 2018, doi: 10.3389/fphys.2018.00403.
[70] T.S. Palsson, A. Rubio-Peirotén, V. Doménech-García, „Sleep deprivation increases pain sensitivity following acute muscle soreness,“ Journal of Pain Research, 2021.
[71] S. Guruhan et al., „The Effects of Total Sleep Deprivation on Pain Thresholds and Delayed-Onset Muscle Soreness in Physically Active Individuals,“ Conference Paper, 2023.
[72] M. Dib et al., „The Role of Sleep in Reducing Inflammatory Responses After Exercise,“ International Journal of Sports Science, vol. 39, no. 1, 2021.
[73] S.L. Halson et al., „The Effects of Sleep on Muscle Recovery and Injury Prevention,“ Sports Medicine, vol. 52, no. 1, 2019.
[74] R. Hirata et al., „Effects of Sleep Deprivation on Muscle Function and Pain Sensitivity,“ Journal of Exercise Science and Fitness, 2022.
[75] L.T. Robey et al., „Impact of Sleep Deprivation on Muscle Soreness and Recovery in Elite Athletes,“ Journal of Sports Medicine, vol. 56, no. 2, 2020.
[76] H.H. Fullagar et al., „Sleep and Athletic Performance: The Importance of Sleep for Recovery and Training Adaptation,“ Journal of Strength and Conditioning Research, vol. 35, no. 5, 2018.
[77] M. E. Smith, T. M. Brown, und R. J. Williams, „The impact of omega-3 fatty acids on delayed-onset muscle soreness,” Journal of Nutrition and Metabolism, vol. 20, pp. 234–245, 2020.
[78] D. P. Armstrong, „Inflammation and muscle repair in exercise-induced muscle damage,” Journal of Sports Medicine, vol. 14, pp. 98–108, 2019.
[79] J. Hulmi, et al., „Effects of protein supplements on muscle soreness and recovery,” Journal of Sports Nutrition, 2018.
[80] J. Pasiakos, et al., „Protein requirements and exercise-induced muscle damage,” Nutritional Research Reviews, 2015.
[81] M. E. Smith, T. M. Brown, and R. J. Williams, „The impact of omega-3 fatty acids on delayed-onset muscle soreness,” Journal of Nutrition and Metabolism, vol. 20, pp. 234–245, 2020.
[82] K. Davis, L. Johnson, und M. J. Miller, „BCAAs and muscle damage: A systematic review,” Journal of Sports Nutrition, vol. 28, no. 3, pp. 120–135, 2019.
[83] T. Smith et al., „The role of BCAAs in reducing DOMS and improving muscle recovery,” Journal of Athletic Performance, vol. 15, pp. 110–123, 2021.
[84] S. Brown, M. Thomas, und L. Wilson, „Caffeine’s role in exercise recovery: A focus on DOMS,” Sports Science Review, vol. 5, pp. 45–56, 2020.
[85] J. Green, K. Hall, und D. Robertson, „Antioxidants in the prevention of muscle soreness: A meta-analysis,” Journal of Sports Research, vol. 34, pp. 140–153, 2021.
Neuigkeiten
Keine neuen Ereignisse.
Öffnungszeiten
Montag bis Donnerstag 08:00 – 20:00 Uhr
Freitag 08:00 – 19.00 Uhr
Samstag 08:00 – 16:00 Uhr
Termine nur nach Vereinbarung
Telefonische erreichbarkeit
werktags 8:00 – 17:00 Uhr
Kontakt & Socials
Durlacher Allee 77
76131 Karlsruhe
0721 – 986 14 141
info@dk-sportphysio.de